Page 84 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 84

VED1
          E\L-LOVELY-H\math3-1 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth  10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV         3-9 iQyu   !    dk   osQ lkis{k vody&xq.kkad] tcfd vk/kj pj ?kkrh; gS

                                             
     3        
       
    
   !

                                     )$ 
 .

                                ;gk¡                        :   *

                                rks                    ; ,  :   *     ; ,

                                                                  d
                                vr%   *    dk   osQ lkis{k vody&xq.kkad  dx     *   gSA


                                                   d         lim  log e  + (x  − ) h  log x
                                                                                 e
                                iqu%                   *   :
                                                  dx         h →0        h
                                                                                    e
                                                           :  lim     log e  (1 + x  / )  − hx  log x
                                                             h →0          h
                                                                                  / )
                                                                                          e
                                                           :  lim    e  + log x  e  + log (1  hx  −  log x
                                                             h →0             h
                                                                                 <lw=k %   *   7#  :   *  7 ;   *  #=

                                                                           / )
                                                                    e
                                                           :  lim    log (1 h + hx
                                                              →0
                                                             h
                                                                 h  −  h 2  +  h 3  −  h 4  +  ......
                                                           :  lim    x  2x 2  3x h 3  4x 4
                                                             h
                                                              →0
                                                                                         x 2  x 3  x 4       
                                                                                 log e  + (1  = x  x  − )  +  −  +  ......  
                                                                                          2   3    4            

                                                                        h    h 2   h 3      1
                                                                 h  x  −   2  +  3  −  4  +  ..... 
                                                           :  lim      2x    3x   4x       
                                                              →0
                                                             h
                                                                              h
                                                           :  lim       −  h  +  h 2  −  h 3  +  ......   1  
                                                              →0 
                                                             h
                                                                   x  2x 2  3x 3  4x 4       
                                                           :  lim     1  −  h ×              :  1
                                                              →0 
                                                             h    x                    
      x





                                                                                        



                                                  d          1
                                ∴                       *    :
                                                  dx         x
                                    uksV~l    *    dks  
   }kjk Hkh fu:fir djrs gSaA
   79   80   81   82   83   84   85   86   87   88   89