Page 143 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 143
VED1
E L-LOVELY-H math8-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
fJekJh^8 L fBy/VB dk noEPk;so ftZu T[g:'r
j[D, C = 60 + 20q B'N
‘q’ d/ ;kg/y ftZu fBy/VB eoB s/
dC
MC = = 20
dq
fJ; soQK 20 = 140 – 6q (∴ MC = P)
iK 6q = 140 – 20 = 120
q = 20 ns/ p = 20
ns/ π = –60
bkG foDkswe j't/rk.
T[dkjoD 13H d' gqEe pkIkoK d/ wzr cbB s/ bkrs cbB fBwB jB.
P 1 = 80 – 5q 1 , P 2 = 180 – 29q 2
ns/ C = 50 + 20 (q 1 + q 2 ).
w[Zb G/d dh ;fEsh ftZu d'jK pkIkoK d/ w[Zb, T[sgkdB, ;hwKs nkrw ns/ T[sgkde dk e[ZbQ bkG
gsk eo'.
jZb L ;kB{z gsk j?^
P 1 = 80 – 5q 1 ...(i)
P 2 = 180 – 29q 2 ...(ii)
C = 50 + 20 (q 1 + q 2 ) ...(iii)
gfjb/ pkIko dk e[ZbQ nkrw
R 1 = P 1 q 1 = (80 – 5q 1 )q 1
2
= 80q 1 – 5q ...(iv)
d{i/ pkIko dk e[ZbQ nkrw
R 2 = p 2 q 2 = (180 – 29q 2 )q 2
2
= 180q 2 – 29q 2 ...(v)
;wheoD (iv) B{z q 1 d/ ;kg/y ftZu nzfPe fBy/VB eoe/ Iho' d/ pokpo oZyD s/
∂ R
−
0
MR = 1 = 80 10q = ....(vi)
1 q ∂ 2
1
iK 10q 1 = 80 iK q 1 = 8
fJ;h soQK ;wheoD (v) dk nzfPe fBy/VB eoe/ Iho' d/ pokpo oZyD s/
∂ R
−
MR = 2 = 180 58q = ...(vii)
0
2 q ∂ 2 1
180 90
iK 58q 2 = 180 iK q = =
2
58 29
e[ZbQ bkG π = R 1 + R 2 – C
2
2
= 80q 1 – 5q 1 + 180q 2 – 29q 2 – 50 – 20q 1 – 20q 2
2
2
= 60q 1 – 5q 1 + 160q 2 – 29q 2 – 50 ....(viii)
LOVELY PROFESSIONAL UNIVERSITY 137