Page 188 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 188

VED1
          E L-LOVELY-H math12-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






           noEPk;soh dk rfDs                                                 Hitesh Jhanji, Lovely Professional University

                     B'N              fJekJh^12L nB[ebB L nB[ebB d/ nXkoG{s fB:w

                                         (Integration : Basic Rules of Integration)


                               ftP/ t;s{ (Contents)
                               T[d/P (Objectives)
                               gq;sktBk (Introduction)

                                  12H1  ftnkge nB[ebB (Comprehensive Integrals)
                                 12H2  wkBe nB[ebB (Standard Integral)

                                        n
                                 12H3  x  dk x d/ ;kg/y nB[ebB, fiZE/ n ≠–1.
                                                   n
                                        (Integration of x  Relative to x, Where n ≠–1)
                                 12H4  fe;h nuo ns/ fJZe cbB d/ r[DBcb dk nB[ebB
                                       (Integration of the Multiplication of a Constant and a Function)
                                 12H5  cbBK d/ :'rcb iK nzso dk nB[ebB
                                       (Integration of the Sum and Subtract of the Functions)
                                 12H6  ;koKP (Summary)

                                 12H7  Ppde'P (Keywords)
                                 12H8  nfGnk; gqPB (Review Questions)
                                 12H9  ;zdoG g[;seK (Further Readings)


                               T[d/P (Objectives)

                               fJ; fJekJh d/ nfXn?B s'A pknd ftfdnkoEh :'r j'Dr/L
                                  •   ftnkge nB[ebB B{z jZb eoB ftZu.

                                  •   wkBe nB[ebB B{z ;wMD ;zpzXh.
                                       n
                                  •   x  dk x d/ ;kg/y nB[ebB, fiZE/ n≠1, Bkb ;zpzXs ;wZf;nktK B{z jZ beoB ;zpzXh.
                                  •   fe;h nuo ns/ fJZe cbB d/ r[DBcb dk nB[ebB eZYD ;zpzXh.
                                  •   cbBK d[nkok :'rcb iK nzso dk nB[ebB eoB ;zpzXh.

                               gq;sktBk (Introduction)

                               cbB dk nB[ebB (Integration of the Function)^fe;h cbB dk fBy/VB gsk eoB dh gqfsb'w
                               (Inverse)  fefonk  B{z nB[ebB  (Integration)  efjzd/ jB. fBy/VB rfDs ftZu  n;hA fdZs/ j'J/
                               cbB dk fBy/VB r[DKe (differential coefficient) gsk eod/ jK, gozs{ nB[ebB^rfDs ftZu ;kB{z
                               T[jBK cbBK B{z gsk eoBk j[zdk j? fiBQK dk fBy/VB r[DKe fdZsk j'fJnkj?.
                               T[dkjoE ti'A, sin x dk x dk ;kg/y fBy/VB eoB s/ nfBy/VB r[DKe cos x j[zdk j? sK cbB cos
                               x dk x d/ ;kg/y nB[ebB eoB s/ nB[ebB (integral) sin x j't/rk.
                               wzB fbU f (x), x dk e'Jh cbB j? fi;dk fBy/VB r[DKe  f ′ (x) j?, Gkt
                                                    d
                                                          { ()} =  f ′ () x
                                                       fx
                                                   dx


           182                                             LOVELY PROFESSIONAL UNIVERSITY
   183   184   185   186   187   188   189   190   191   192   193