Page 363 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 363

VED1
          E L-LOVELY-H math29-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth  10-9-12






                                                                                     fJekJh^29 L o/ykfuZso ftXh

                dot gqsh feb'rqkw 1000 e?b'oh ns/ gq'NhB dh 50 rqkw wksok j?l ns/ wZyD d/ 2000 e?b'oh ns/   B'N
                200 rqkw gq'NhB gqsh nZXk feb'rqkw j?. nkdoP nkjko ftZu gqshfdB 3000 e?b'oh ns/ 200 rqkw
                gq'NhB ukjhdk j?. 500 rqkw p?qZv dh wkofeN ehws o[H 2 ns/ wZyD dh gqsh 500 rqkw ehws o[H 6
                j?.
                ;wZf;nk fJj  j? fe T[Zgo ;{uh d/ nkyoh ekbw ftZu fdZs/ rJ/ fBT{Bsw g'Pe^nkjko^nkdoP d/
                nB[;ko ;G s'A T[Zu nkjko ns/ gqPBfuzBQ (<) d[nkok gqrN ehsh rJh fBT{Bsw bkrs eh j'Dr/.
                nkjko dh e[ZbQ bkrs
                Minimise



                Subject                                                                                                                                .....(1)


                ns/
                fBT{Bsw ehsh ikD tkbh bkrs C j?, fijVh d'B'A x 1  ns/ x 2  uoK dk o/yh cbB (linear function)
                j?. gkoPt ;zpzX 3 ns/ 8 n;wkBsktK jB fijVhnK fdZs/ j'J/ nkjko d/ gqkgs ehs/ ikD tkb/
                fBT{Bsw g'Pe nkjko nkdoP B{z gqrN eodh jB. ;wZf;nk o/yh j? feT[Afe o/yh n;wkBsktK d/
                ofjzd/ j'J/ nfoDkswe uo (non-negative veriables) fBT{Bsw pDkT[D/ jB. fszB'A ftZu'A fe;/ d'
                f;EshnK Bkb jZb j' ;edk j?. T[dkjoD d/ bJh, fJZe gkoPt ;zpzX (side relation) d/ j[zd/ j'J/
                bkrs C B{z fBT{Bsw pDkfJnk ik ;edk j?L x 1  + 2x 2  = 3 fJ;B{z jZb eoB s/L x 1  = 3 ns/ x 2  = 3/2
                = 1.5 fuZso 29H2 ftZu fJ;B{z AB o/yk d[nkok ftnes ehsk frnk fiZE/ OA = 1.5x 2  ns/ OB =
                3x 1 .
                d{ik  gkoPt  ;zpzXh  j?L  2x 1   +  8x 2   =  8
                ns/ fJ;B{z jZb eoB s/, x 1  = 4 ns/ x 2
                = 1 gqkgs j[zd/ jB. fJ;B{z fuZso 29H2
                ftZu  CD  o/yk d[nkok fyZfunk frnk j?
                fijVk fJ; ;wheoD B{z ;zs[PN eodk j?
                fiZE/ OC = 1x 2  ns/ OD = 4x 1 .
                fJ; soQK  fuZso ftZu  x 1   (pq?Zv) ;wKso
                neP T[Zs/ ns/ x 2  (wZyD) nB[bzp neP
                T[Zs/ wkg/ rJ/ jB.  AB  o/yk ;wheoD
                x 1   +  2x 2   =  3  ns/  CD  o/yk  ;wheoD
                2x 1  + 8x 2  = 8 B{z ftnes eodhnK jB.
                ;zGkte jZb w'Nh o/yk AZD T[Zs/ iK T[;d/ T[Zgo j't/rk. fJj ;kvh ;wZf;nk ftZu Z fpzd{ T[Zs/ j[zdk
                j? fiZE/ d'B'A o/yktK AB ns/ CD eZNdhnK jB.
                fJj gsk eoB d/ bJh fe ;zGkte jZb Z T[Zs/ jh j[zdk j? iK A iK D fpzd{ T[Zs/, n;hA ;wZf;nk d/
                d'B'A ;wheoDK B{z :[rws ;wheoDK d/ o{g ftZu jZb eod/ jBL
                                                  x 1  + 2x 2  = 3                                                                                        .....(1)
                                                2x 1  + 8x 2  = 8                                                                                        .....(2)
                T[dkjoD  L  wzfBnk fJZe T[sgkdB fdZs/ j'J/ gqfspzXK  (Constraints)  d/ nzsors nkgDk nkrw
                (Revenue) tZX s'A tZX eoBk ukj[zdk j?. wzfBnk fJZe cow d' T[sgkd X 1  ns/ X 2  dk T[sgkdB
                eoBk ukj[zdh j? ns/ T[;d/ bJh T[;d/ e'b j/m nB[;ko fszB ;kXB a, b ns/ c fdZs/ j'J/ jB^

                                                            a = 40, b = 50, c = 42



                                           LOVELY PROFESSIONAL UNIVERSITY                                               357
   358   359   360   361   362   363   364   365   366   367   368