Page 85 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 85

VED1
          E L-LOVELY-H math3-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






                                                                                             fJekJh^3 L fBy/VB

                                                                                  y δ  dy         B'N
                       s'A puD d/ bJh fejk iKdk j? fe cbB dk x d/ ;kg/y fBy/VB^r[DKe  lim   B{z   (y)
                                                                              x δ→ 0  x δ  dx
                           dy
                       iK    fbyd/ jB. fJ; soQK ;hwk gskeoB dh fJ; fefonk B{z fBy/VB eoBk efjzd/ jB
                           dx
                       iK fe;h cbB d/ fBy/VB^r[DKe gsk eoB dh fefonk B[z fBy/VB (Differentiation) efjzd/
                       jB.
                   •   i/eo  x  dk e'Jh  cbB  f  (x)  ns/  x  +  δx  dk T[jh cbB  f  (x  +  δx)  j't/ sK
                                δ
                            (
                                     (
                           fx + x)-  fx)
                       lim                dk ;hwKs wkB  (limiting  value),  x  d/ ;kg/y  f  (x)  dk
                       ´ x+0    δ x
                       fBy/VB^r[DKe (differential coefficient) ejkT[Adk j?.
                       d         d        d
                                      x
                   •     { ()} =    f 1  () ±  f 2  ()
                           fx
                                              x
                       dx        dx      dx
                   •   fJ; soQK d' cbBK d/ i'V iK nzso dk fBy/VB^r[DKe T[jBK d/ fBy/VB^r[DKe d/ i'V iK
                       nzso d/ pokpo j[zdk j?.
                       d
                          e
                   •     () =  e
                                x
                           x
                       dx
                        d
                   •     a =  a x  log a  Gkt d' cbBK d/ Gkrcb dk fBy/VB^r[DKe (Diff. Coeff.)
                           x
                       dx         e

                3H13 Ppde'P (Keywords)
                   •   fBy/VB^r[DKe (Differential Coefficient) ^ ntebi.
                   •   tkXk (growth) ^ tkXk.

                3H14 nfGnk; gqPB (Review Questions)

                       d
                          −
                             2
                            x
                   1H    (6 )  dk wkB eZY'.                                              (T[Zso L –12x)
                       dx
                       d
                                                                                       5
                            6
                   2H    (5x +  2 ) x  dk wkB eZY'.                                       (T[Zso L 30x  + 2)
                       dx
                                 d
                                    x
                   3H  f;ZX eo' fe   a =a x  log a H
                                 dx         e
                                                                                 6  1  1
                   4H  6 logx  −  x −  7 dk fBy/VB r[DK gsk eo'.                     (T[Zso L   −  x )
                                                                                       2
                                                                                 x  2
                                x                  dy
                   5H  i/eo  y=     sK ;kfps eo' fe x  =  y (1 y−  ) .
                               x+ 5                dx

                T[Zso L ;t?^w[bKeD (Answer: Self Assessment)
                                                                                 6
                  1H (i) fBy/VB        (ii) r[DBcb        (iii) a        (v) n – 1        (v) 63x
                  2H (i) (a)            (ii) (b)                     (iii) (c)           (iv) (d)               (v) (a)





                                            LOVELY PROFESSIONAL UNIVERSITY                                               79
   80   81   82   83   84   85   86   87   88   89   90