Page 203 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_ENGLISH
P. 203

Unit 13: Coefficient of Simple Regression Method


            Regression Coefficient of X on Y                                                         Notes


                                                   N Σ  dd y  – Σ  d Σ  x  d y
                                                       x
                                              b xy =             2
                                                    N Σ  d  2  – Σ  ( y  y ) d

                                                                           2
                                           Σ dd           x  = + 3,  dΣ  y = 2,  dΣ  y = 372, N = 7
                                             x y = – 132,  dΣ
                                                          ) ( )( )
                                                   ()(–132 – 3 2    – 924–6
                                                    7
                                              b xy =               =         = – 0.353
                                                           ) ( )
                                                     ()(372–2  2    2,604 – 4
                                                     7
            Regression Coefficient of Y on X
                                                   N Σ  dd  – Σ  d Σ  d
                                              b yx =    x  y   x  y
                                                     N Σ  d  2  ( x  d x ) – Σ  2

                                                          ) ( )( )
                                                    7
                                                   ()(–132 – 3 2    – 924–6
                                                 =                 =        = – 2.473.
                                                      755 –
                                                     ()( ) ( ) 3  2  385–9
            Example 6: Given the bivariate data:
                X         1        5        3        2        1       1        7      3
                Y         6        1        0        0        1       2        1      3

            (a)  Fit a regression line of Y on X and thence predict Y if X = 5.
            (b)  Fit the regression line of X on Y and thence predict X if Y = 2.5.
            Solution:
                  X          (X – 3)                     Y         (Y – 2)

                               d x        d x 2                       d y        d y 2
                  1            –  2         4            6           +  4         16
                  5            +  2         4            1            –  1         1
                  3             0           0            0            –  2         4
                  2            –  1         1            0            –  2         4
                  1            –  2         4            1            –  1         1
                  1            –  2         4            2             0           0
                  7            +  4        16            1            –  1         1
                  3             0           0            5           +  3          9
                                                                                   2
                                           2
               Σ  X  = 23   Σ d x  = – 1  ∑  d x  = 33  Σ  Y  = 16  Σ d y  = 0  Σ  d y  = 36
            Regression Equation of X on Y


                                                   b
                                            X – X  =  xy ( Y – Y )








                                             LOVELY PROFESSIONAL UNIVERSITY                                      197
   198   199   200   201   202   203   204   205   206   207   208