Page 385 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 385

bdkbZ—27% izkf;drk dk ;ksxkRed ,oa xq.kkRed fu;e




                                         = G 5 F 6 H  + J − 4I F 5 ×G  4I J =  25 + 24  −  20  =  29  uksV
                                               5K H
                                                        5K
                                                                           30
                                                                      30
                                                               30
                                                     6
            27-2 izkf;drk dk xq.kkRed fu;e (Multiplicative Law of Probability)
            tc nh xbZ lHkh LorU=k ?kVukvksa osQ ,d lkFk ?kVus dh izkf;drk Kkr djuh gks rc izkf;drk dh xq.kkRed
            fu;e dk iz;ksx fd;k tkrk gSA xq.ku izes; nks ;k nks ls vf/d LorU=k ?kVukvksa osQ ,d lkFk ?kVus dh
            izkf;drk muosQ vyx&vyx ?kfVr gksus dh O;fDrxr izkf;drkvksa dk xq.kuiQy gSA ;fn nks ?kVuk,¡ A o
            B LorU=k gSa rks muosQ ,d lkFk ?kVus dh izkf;drk fuEu gksxhμ
                               P(A rFkk  B) = P(A) × P(B)
            leqPp; :i esa       P(A ∩ B) = P(A) . P(B)

            izek.k (Proof)μekuk ,d ?kVuk A oqQy n  rjhdksa ls ?kV ldrh gS ftuesa ls a  rjhosQ vuqowQy gS vkSj
                                            1
                                                                         1
            ?kVuk  B oqQy  n  rjhdksa ls ?kV ldrh gS ftuesa ls  a  rjhosQ vuqowQy gSa] rcμ
                       2
                                                    2
                                           a            a
                                     P(A) =   1   and P(B) =   2
                                           n 1          n 2
            ;fn nksuksa ?kVuk,¡ ,d lkFk ?kVsa rks iz;ksxkuqlkj vuqowQy ifjfLFkfr;k¡ a  × a  gksaxh vkSj lEHkkO; ifjfLFkfr;k¡
                                                               1
                                                                   2
            n  × n  gksaxhA vr%  A o  B osQ lkFk ?kVus dh izkf;drkμ
             1
                2
                                         a ×  a   a    a
                              P(A and B) =   1  2  =  1  ×  2   = P(A) × P(B)
                                         n ×  n 2  n 1  n 2
                                          1
            rhu LorU=k ?kVukvksa dk lw=kμP(A and B and C) = P(A) × P(B) × P(C)
            rhu ls vf/d LorU=k ?kVukvksa dk lw=kμ
                        P(1, 2, 3, 4,......n) = P  × P  × P  × P  × ...... P n
                                                     4
                                                 3
                                         1
                                             2
                    nks ;k nks ls vf/d Lora=k ?kVukvksa osQ ,d lkFk dh izkf;drk muosQ vyx&vyx <ax ls
                    ?kfVr gksus dh izkf;drkvksa dk xq.kuiQy gSA

            mnkgj.k  (Illustration 4) :

            ,d flDosQ dks rhu ckj mNkyus ij lHkh  (3) iV vkus dh izkf;drk D;k gS\
            gy  Solution : flDosQ dks rhuksa ckj mNkyk tkuk] LorU=k ?kVuk,¡ gSa vr%
                                                       1
                          igyh ckj iV vkus dh lEHkkouk  =
                                                       2
                                                      1
                          nwljh ckj iV vkus dh lEHkkouk  =
                                                      2
                                                       1
                          rhljh ckj iV vkus dh lEHkkouk  =
                                                       2
                                                      1  1   1  1
                          rhuksa ckj iV vkus dh izkf;drk  =   ×  ×  =
                                                      2  2   2  8
            mngj.k (Illustration 5) : ,d iklk nks ckj isaQdk tkrk gSA izFke isaQd esa 6 rFkk nwljh isaQd esa ,d fo"ke





                                                LOVELY PROFESSIONAL UNIVERSITY                                   379
   380   381   382   383   384   385   386   387   388   389   390