Page 274 - DMTH401_REAL ANALYSIS
P. 274

Real Analysis




                    Notes          21.3 Keyword

                                   Riemann Stieltjes Integrable: Sum of two Riemann Stieltjes integrable functions is also Riemann
                                   Stieltjes integrable.

                                   21.4 Review Questions


                                   1.  Calculate if a < b,  ò  a  fda
                                                       b
                                   2.  Suppose f is a bounded valued function on [a, b] and f2 Î R on [a, b]. Does it follow that
                                       f ÎR on [a, b]?

                                   3.  Show that 0ò1 x2dx = 3/5 where a(n) = x3
                                   4.  Show that 0ò2 [x]dx = 3/5 where a(x) = x2 = 3.

                                   Answers: Self  Assessment

                                   1.  integrable                        2.   integrable

                                   3.   f(x) £  k " x E[a,b]             4.   c Î [a, b]

                                   21.5 Further Readings




                                   Books       Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
                                               (3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).
                                               G.F. Simmons: Introduction  to Topology  and Modern  Analysis, Ch.  2(9-13),
                                               Appendix 1, p. 337-338.
                                               Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
                                               Ch.15(15.2, 15.3, 15.4)

                                               T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.
                                               S.C. Malik: Mathematical Analysis.
                                               H.L. Royden: Real Analysis, Ch. 3, 4.


























          268                               LOVELY PROFESSIONAL UNIVERSITY
   269   270   271   272   273   274   275   276   277   278   279