Page 371 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 371

Complex Analysis and Differential Geometry




                    Notes          At this point, it is useful to introduce the Christoffel symbols (of the first kind) [ ; ], defined
                                   such that
                                                                  [ ; ] = X   .  X ,
                                                                             
                                   where , ,   {u, v}. It is also more convenient to let u = u  and v = u , and to denote [u  v ; u ]
                                                                                          2
                                                                                  1
                                                                                                         
                                                                                                              
                                                                                                           
                                   as [ ; ].
                                   Doing so, and remembering that
                                                                   
                                                                     .
                                                                  kn X  = EA + FB,
                                                                       u
                                                                   
                                                                     .
                                                                 kn X  = FA + GB,
                                                                       v
                                   we have the following equation:
                                                                                         '
                                                                                       '
                                                                          "
                                                       E  F  A    E  F    u   [   ; 1]u u 
                                                                          1
                                                                                       
                                                                                         
                                                                           
                                                                     "      '  '  . 
                                                                                
                                                       F  G  B    F  G u 2    1,2 [ ; 2]u u  
                                                                                
                                                                                       
                                                                              1,2
                                   However, since the first fundamental form is positive definite,
                                   EG – F  > 0, and we have
                                        2
                                                                             1 G
                                                             E  F   1   2     F 
                                                                        
                                                                   (EG F )       .
                                                             F  G             F  E 
                                   Thus, we get
                                                                            '
                                           "
                                                                          '
                                                          1 G
                                    A    u          2      F   [   ; 1]u u 
                                           1
                                                                          
                                                                            
                                                      
                                       =   u "   +     (EG F )       '  '  . 
                                     B     2    1,2    F  E    [ ; 2]u u  
                                                                          
                                                1,2
                                                                                             ,
                                                                                            k
                                   It is natural to introduce the Christoffel symbols (of the second kind)    defined such that
                                                                                            ij
                                                           1 ij    2     F   [ij ; 1]
                                                                       1 G
                                                              (EG F )            . 
                                                                   
                                                            2          F  E  [ij ; 2] 
                                                            ij 
                                   Finally, we get
                                       1 
                                                '
                                              1
                                                 '
                                       "
                                   A =  u   G u u , j
                                              ij
                                                i
                                          i 1,2
                                          
                                          j 1,2
                                          
                                       2 
                                       "
                                               '
                                                 '
                                   B =  u    ij 2 u u , j
                                               i
                                          i 1,2
                                          
                                          j 1,2
                                          
                                   Lemma 1. Given a surface X and a curve C on X, for any point p on C, the tangential part of the
                                   curvature at p is given by
                                                                                      
                                                       
                                                           
                                                                                        ' 
                                                                       ' 
                                                                                       '
                                                             1 
                                                     k g  g n =  u    1 ij u u X      u    2 ij u u X ,
                                                                     '
                                                                              2 
                                                                              "
                                                             "
                                                                                        j
                                                                                           v
                                                                                         
                                                                       j
                                                                        
                                                           
                                                                     i
                                                                                       i
                                                                          u
                                                               i 1,2          i 1,2   
                                                                
                                                                                 
                                                               j 1,2          j 1,2   
                                                                                 
                                                                
          364                               LOVELY PROFESSIONAL UNIVERSITY
   366   367   368   369   370   371   372   373   374   375   376