Page 280 - DMTH403_ABSTRACT_ALGEBRA
P. 280

Unit 29: Computing Galois Groups




          29.5 Review Questions                                                                 Notes

          1.   Give the order and describe a generator of the Galois group of GF (729) over GF(9).

          2.   Determine the Galois group of each of the following polynomials in Q[x]; hence, determine
               the solvability of each of the polynomials
               (a)  x  – 12x  + 2           (b)  x  – 4x  + 2x + 2
                          2
                                                  5
                     5
                                                      4
               (c)  x  – 5                  (d)  x  – x  – 6
                                                     2
                     3
                                                  4
               (e)  x  + 1                  (f)  (x  – 2) (x  + 2)
                                                         2
                     5
                                                   2
               (g)  x  – 1                  (h)  x  + 1
                                                  8
                     8
               (i)  x  – 3x  – 10
                         2
                     4
          3.   Find a primitive element in the splitting field  of each of the  following polynomials  in
               Q[x].
               (a)  x  – 1                  (b)  x  – 2x  – 15
                                                      2
                                                  4
                     4
               (c)  x  – 8x  + 15           (d)  x  – 2
                                                  3
                         2
                     4
          4.   Prove that the Galois group of an irreducible quadratic polynomial is isomorphic to Z .
                                                                                     2
          5.   Prove that the Galois group of an irreducible cubic polynomial is isomorphic to S  or Z .
                                                                                 3   3
          Answers: Self  Assessment
          1. (a) 2. (b) 3. (a) 4. (a)
          29.6 Further Readings

           Books      Dan Saracino: Abstract Algebra; A First Course.
                      Mitchell and Mitchell: An Introduction to Abstract Algebra.
                      John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).




          Online links  www.jmilne.org/math/CourseNotes/
                      www.math.niu.edu

                      www.maths.tcd.ie/
                      archives.math.utk.edu


















                                           LOVELY PROFESSIONAL UNIVERSITY                                  273
   275   276   277   278   279   280   281   282   283   284   285