Page 167 - DMTH404_STATISTICS
P. 167

Unit 12: The Moment Generating Functions



            12.1 Moment Generating Function of a Random Variable                                  Notes


            Moment Generating Function - Defintion


            We start this lecture by giving a definition of moment generating function.
            Definition: Let X be a random variable. If the expected value:
                                              E[exp(tX)]
            exists and is finite for all real numbers t belonging to a closed interval [–h, h]   , with h > 0,
            then we say that X possesses a moment generating function and the function M  : [–h, h]  
                                                                            X
            defined by:
                                          Mx(t) = E[exp(t(X)]
            is called the moment generating function (or mgf) of X.

            Moment Generating Function - Example

            The following example shows how the moment generating function of an exponential random
            variable is calculated.


                   Example: Let X be an exponential random variable with parameter   ...its supposed
            Rx is the set of positive real numbers:
                                              RX = [0, )
            and its probability density function f (x) is:
                                          x
                                                          
                                                  
                                             l exp( lx)  if x Rx
                                       fx(x)  
                                                       
                                               0   if x Rx
            Its moment generating function is computed as follows:
                              
                  E[exp(tX)]  =     exp(tx)fx(x)dx

                              
                                     
                           =  0   exp(tx) exp( x)dx
                               
                           =   0   exp((t   )x)dx

                                1             
                           =      exp((t   )dx
                                            
                                t          0 
                                  1 
                           =   0 
                                    
                                 t   
                              
                           =
                             t  









                                             LOVELY PROFESSIONAL UNIVERSITY                                  159
   162   163   164   165   166   167   168   169   170   171   172