Page 108 - DMTH502_LINEAR_ALGEBRA
P. 108
Linear Algebra
Notes (g) Find a basis for V.
(h) For what 5 × 1 column matrices Y does the equation AX = Y have solutions X?
To solve these problems we form the augmented matrix A’ of the system AX = Y and apply an
appropriate sequence of row operations to A’.
1 2 0 3 0 y 1 1 2 0 3 0 y 1
1 2 1 1 0 y 0 0 1 4 0 y y
2 1 2
0 0 1 4 0 y 0 0 1 4 0 y 3
3
2 4 1 10 1 y 4 0 0 1 4 1 2y y 4
1
0 0 0 0 1 y 0 0 0 0 1 y
5 5
1 2 0 3 0 y 1 1 2 0 3 0 y 1
0 0 1 4 0 y y 0 0 1 4 0 y y
1 2 1 2
0 0 0 0 0 y y y 0 0 0 0 1 y 5
1
3
2
0 0 0 0 1 3y y y 4 0 0 0 0 0 y y y 3
1
2
2
1
0 0 0 0 1 y 0 0 0 0 0 3y y y y
5 1 2 4 5
(a) If
y 1
y y
1 2
PY = y 5
y y y 3
1
2
3y y y y
1 2 4 5
for all Y, then
1 0 0 0 0
1 1 0 0 0
P = 0 0 0 0 1
1 1 1 0 0
3 1 0 1 1
hence PA is the row-reduced echelon matrix
1 2 0 3 0
0 0 1 4 0
R = 0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
It should be stressed that the matrix P is not unique. There are, in fact, many invertible
matrices P (which arise from different choices for the operations used to reduce A’) such
that PA = R.
(b) As a basis for W we may take the non-zero rows
= (1 2 0 3 0)
1
102 LOVELY PROFESSIONAL UNIVERSITY