Page 108 - DMTH502_LINEAR_ALGEBRA
P. 108

Linear Algebra




                    Notes          (g)  Find a basis for V.
                                   (h)  For what 5 × 1 column matrices Y does the equation AX = Y have solutions X?
                                   To solve these problems we form the augmented matrix A’ of the system AX = Y and apply an
                                   appropriate sequence of row operations to A’.

                                                  1 2  0  3   0 y 1    1 2  0  3  0   y 1  
                                                  1 2  1  1 0 y     0 0  1  4 0   y   y  
                                                                 2                    1  2  
                                                  0 0  1   4  0 y    0 0  1  4  0     y  3   
                                                                  3 
                                                                                          
                                                  2 4  1  10 1 y 4    0 0  1  4  1  2y   y 4 
                                                                                         1
                                                  0 0  0  0   1 y    0 0  0  0  1     y   
                                                                 5                     5  
                                              1 2 0 3 0       y 1      1 2 0 3 0         y  1    
                                              0 0 1 4 0     y   y     0 0 1 4 0        y   y   
                                                             1   2                       1  2    
                                              0 0 0 0 0    y   y   y     0 0 0 0 1   y  5    
                                                             1
                                                                    3
                                                                2
                                                                                                 
                                              0 0 0 0 1  3y   y   y 4    0 0 0 0 0   y   y   y  3  
                                                             1
                                                                                              2
                                                                 2
                                                                                          1
                                              0 0 0 0 1       y        0 0 0 0 0   3y   y   y   y 
                                                               5                      1   2  4  5
                                   (a)  If
                                                                           y 1     
                                                                          y   y   
                                                                           1  2    
                                                                 PY =      y 5     
                                                                                   
                                                                        y   y   y 3  
                                                                          1
                                                                              2
                                                                       3y   y   y   y 
                                                                        1   2  4   5
                                       for all Y, then
                                                                       1  0  0 0  0 
                                                                       1   1 0 0  0  
                                                                                   
                                                                     
                                                                 P =  0   0  0 0  1 
                                                                                   
                                                                       1  1  1 0  0  
                                                                       3  1  0 1  1 
                                                                                   
                                       hence PA is the row-reduced echelon matrix

                                                                     1 2 0 3 0
                                                                     0 0 1 4 0 
                                                                               
                                                                    
                                                                R =  0 0 0 0 1
                                                                               
                                                                     0 0 0 0 0 
                                                                     0 0 0 0 0 
                                                                               
                                       It should be stressed that the matrix P is not unique. There are, in fact, many invertible
                                       matrices P (which arise from different choices for the operations used to reduce A’) such
                                       that PA = R.
                                   (b)  As a basis for W we may take the non-zero rows
                                                             = (1 2 0 3 0)
                                                            1



          102                               LOVELY PROFESSIONAL UNIVERSITY
   103   104   105   106   107   108   109   110   111   112   113