Page 63 - DMTH502_LINEAR_ALGEBRA
P. 63

Unit 1: Vector Space over Fields




          General Properties of Vector Spaces                                                   Notes
          Let V be a vector space over a field F then
          1.   a O = O for a  F, O  V
          2.   O = O for O  F,   V

          3.    ( a  ) (  )a  (a  )  for  a F ,  V

                                    ,
          4.    ( a u  ) au a  for  a F u  and   V
          5.   If a = 0 then either a = 0 or V = 0 for a  F,   V.
          Proof:
          1.                       L.H.S = a O
                                        = a (O + O)                   (because O = O + O)

                                        = a O + a O                     (distributive law)
              Thus                   aO = aO + aO or aO + O = aO + aO
              Hence by cancellation law we get
                                     aO = O.

          2.                      L.H.S. = O   (O O )                  (because O = 0 + 0)
                                        = 0   0                         (distributive law)

              Thus                   0  = 0   0
              or                  0 + 0  = 0 + 0
              Hence by cancellation law
                                        = 0 = 0.

          3.                   a   ( a  ) = a (  ) a  0 0
             Therefore a   is additive inverse of a(– ).

              Again  a  ( a )  (  )a Oa  0.
             Therefore a   is additive inverse of (– ) a.
             i.e. (– v) a = – av

          4.                      L.H.S. = a (u  )
                                        = a  [u  (  )]
                                        = au a (  )                      [by property (3)]

                                        = a u – a
                                        = R.H.S.
          5.   If a = 0 then the proposition is true.
                             –1
               But if a  0 then a  exists in F.
                                     a  = 0    a  1 (a  )  a  1 0  (a  1  ) a
                                        = 0    1 .  0     0.




                                           LOVELY PROFESSIONAL UNIVERSITY                                   57
   58   59   60   61   62   63   64   65   66   67   68