Page 181 - DMTH503_TOPOLOGY
P. 181

Unit 19: The Urysohn Lemma




                  1                                                                             Notes
               t   ,1,              for n   1
                  2
                  1  2  3  4
               t   ,  ,  ,  ,       for n   2
                  2  2  2 2  2  2  2 2
          A   B =   A  X – B

               X – B is an open set containing a closed set A. Using the normality, we can find an open set
          G  X s.t.

               A  G   G   X – B                                                 ...(1)

          Writing G = H  , X – B = H , we get
                      1/2       1
               A  H    H 1/2   H
                    1/2         1
          This is the first stage of our construction

          Consider the pairs of sets (A, H ), ( H 1/2 , H )
                                    1/2       1
          Using normality, we obtain open sets, H , H   X s.t.
                                           1/4  3/4
               A  H    H 1/4   H
                    1/4         1/2
               H 1/2   H    H 3/4   H
                       3/4         1
          Combining the last two relations, we have

          A  H    H 1/4   H    H 1/2   H    H 3/4   H
               1/4         1/2        3/4         1
          This is the second stage of our construction.

                                                                        n
          If we continue this process of each dyadic rational m of the function t = m/2 , where
                                                         n
                                    n = 1, 2, ... and m = 1, 2 ... 2  – 1,
          Then open sets H  will have the following properties:
                        t
          (i)  A  H    H   H     t  T
                         t
                    t        1
          (ii)  Given t , t   T s.t.
                     1  2
          t  < t    A   H   1 t H   H   2 t H   H
           1  2        1 t       2 t      2
          Construct a function f : X  R s.t. f(x) = 0    x  H
                                                  t
          and f(x) = {t : x  H } otherwise
                          t
          In both cases x  X.

          f(x) = sup{t : x  H } = sup{t} = sup(T) = 1
                         t
          Thus f(x) = 0    x  H
                            t
          and f(x) = 1    x  H  otherwise
                           t
          f(x) = 0    x  H , A  H     t  T  f(x) = 0   x  A  f(A) = {0}
                       t     t
          f(x) = 1    x  H , H   H     t  T  f(x) = 1    x  H
                       t  t   1                      1



                                           LOVELY PROFESSIONAL UNIVERSITY                                   175
   176   177   178   179   180   181   182   183   184   185   186