Page 49 - DMTH503_TOPOLOGY
P. 49
Unit 4: The Product Topology on X × Y
So, we have proved that Notes
W × W B s.t (x , x ) W × W
1 2 1 2 1 2
Now, it remains to prove that
W × W (U × U ) (V × V )
1 2 1 2 1 2
Let (y , y ) W × W be arbitrary.
1 2 1 2
(y , y ) W × W y W , y W
1 2 1 2 1 1 2 2
y U V , y U V
1 1 1 2 2 2
y U , y V and y U , y V
1 1 1 1 2 2 2 2
(y , y ) U × U and (y , y ) V × V
1 2 1 2 1 2 1 2
(y , y ) (U × U ) (V × V )
1 2 1 2 1 2
Finally, any (y , y ) W × W
1 2 1 2
(y , y ) (U × U ) (V × V )
1 2 1 2 1 2
This proves that
W × W (U × U ) (V × V )
1 2 1 2 1 2
It immediately follows from (i) and (ii) that B is a base for some topology, say, T on X.
Theorem 2: Let (X , T ) and (X , T ) be two topological spaces and let , be bases for T and T
1 1 2 2 1 2 1 2
respectively.
Let X = X × X
1 2
Then = { × : B , B } is a base for the product topology T on X.
1 2 1 1 2 2
Proof: Let = {G × G : G T , G T }.
1 2 1 1 2 2
Then is a base for the topology T on X (refer theorem 1)
We are to prove that is a base for T on X.
By definition of base,
for (x , x ) G T
1 2
G × G s.t. (x , x ) G × G G ...(1)
1 2 1 2 1 2
Again (x , x ) G × G C
1 2 1 2
x G T , x G T .
1 1 1 2 2 2
Applying definition of base,
x G T B , s.t. x B G ...(2)
1 1 1 1 1 1 1 1
x G T B , s.t. x B G ...(3)
2 2 2 2 2 2 2 2
B , B B × B .
1 2 2 1 2
Now (2) and (3) B × B B s.t.
1 2
(x , x ) B × B G × G G
1 2 1 2 1 2
or (x , x ) B × B G
1 2 1 2
LOVELY PROFESSIONAL UNIVERSITY 43