Page 49 - DMTH503_TOPOLOGY
P. 49

Unit 4: The Product Topology on X × Y




          So, we have proved that                                                               Notes
           W  × W   B  s.t  (x , x )  W  × W
             1    2        1  2   1    2
          Now, it remains to prove that
          W  × W   (U  × U )   (V  × V )
            1   2    1   2    1   2
          Let (y , y )  W  × W  be arbitrary.
               1  2    1   2
          (y , y )  W  × W      y   W , y   W
            1  2    1   2          1    1  2   2
                                 y   U    V , y   U    V
                                   1   1   1  2   2   2
                                 y   U , y   V  and y   U , y   V
                                   1   1  1   1     2   2  2   2
                                 (y , y )  U  × U  and (y , y )  V  × V
                                    1  2   1   2     1  2   1   2
                                 (y , y )  (U  × U )   (V  × V )
                                    1  2    1   2    1   2
          Finally, any (y , y )  W  × W
                      1  2    1   2
              (y , y )  (U  × U )   (V  × V )
                 1  2   1   2     1   2
          This proves that
               W  × W   (U  × U )   (V  × V )
                 1   2    1   2    1   2
          It immediately follows from (i) and (ii) that B is a base for some topology, say, T on X.
          Theorem 2: Let (X , T ) and (X , T ) be two topological spaces and let  ,   be bases for T  and T
                        1  1      2  2                            1  2          1     2
          respectively.
          Let X = X  × X
                  1  2
          Then  = {  ×   : B    , B    } is a base for the product topology T on X.
                    1   2  1   1  2  2
          Proof: Let  = {G  × G  : G   T , G   T }.
                        1   2  1   1  2  2
          Then  is a base for the topology T on X (refer theorem 1)

          We are to prove that  is a base for T on X.
          By definition of base,
          for (x , x )  G  T
              1  2
            G  × G    s.t. (x , x )  G  × G   G                              ...(1)
               1   2        1  2   1   2
          Again (x , x )  G  × G   C
                 1  2   1   2
           x   G   T ,       x   G   T .
             1    1  1           2   2   2
          Applying definition of base,
               x   G   T    B    , s.t. x   B   G                          ...(2)
                1   1   1     1   1    1   1   1
               x   G   T    B    , s.t. x   B   G                          ...(3)
                2   2   2     2   2    2   2   2
               B   , B      B  × B   .
                1     2   2   1   2
          Now (2) and (3)   B  × B   B   s.t.
                            1   2
               (x , x )  B  × B   G  × G   G
                1  2   1   2   1   2
          or   (x , x )  B  × B   G
                1  2   1   2




                                           LOVELY PROFESSIONAL UNIVERSITY                                   43
   44   45   46   47   48   49   50   51   52   53   54