Page 55 - DMTH503_TOPOLOGY
P. 55

Unit 4: The Product Topology on X × Y




                (x , x )   (U  × U )   (G)                                                 Notes
                2  1  2  2  1   2   2
              x   U    (G) and x   U    (G)                                 ...(1)
                1   1   1       2   2   2
               For  (U  × U ) = { (x , x ) : (x , x )  U  × U }
                   1  1   2    1  1  2  1  2  1   2
                           = {x  : x   U , x   U }
                              1  1    1  2  2
                           = U
                              1
          Similarly,    (U  × U ) = U
                        2  1  2    2
                        (  o f)(y) =  (f(y))
                          1        1
                                =  (x , x )
                                   1  1  2
                                = x
                                   1
          Similarly, (  o f) (y) = x
                    2         2
          Thus, (  o f)(y) = x , (  o f)(y) = x
                 1        1  2        2
          In this event (1) takes the form

               (  o f)(y)   U   1 (G)ü
                
                           1
                 1
                                  ý                                                ...(2)
                
               (  o f)(y)    U    (G)
                 1         2   2  þ
          This y  (  o f)  (U ) and
                        –1
                    1      1
                        –1
               y  (  o f)  (U )
                    2      2
                        –1
                                      –1
              y  [(  o f)  (U )]   [(  o f)  (U )]                             ...(3)
                    1       1     2      2
                                                            –1
                 o f,   o f are given to be continuous and hence (  o f)  (U ) and (  o f)  (U ) are open
                                                                          –1
                1    2                                   1      1      2      2
          in Y.
                     –1
              [(  o f)  (U )   [(  o f)  (U )] is open in Y.
                                  –1
                 1      1     2      2
                                       –1
                        –1
          On taking (  o f)  (U ) = V , [  o f)  (U ) = V .
                    1       1   1  2       2   2
          We have V    V  as an open set in Y.
                   1   2
          According to (3), y  V    V  = V (say)
                             1   2
          any v  V  v  V  and v  V
                          1        2
                                      –1
              v  (  o f)  (U ), v = (  o f)  (U )
                        –1
                    1      1      2      2
              (  o f) (v)  U , (  o  f) (v)  U
                 1         1  2         2
              (  o f) (v)  U    (G) and
                 1         1  1
               (  o f) (v)  U    (G)                                       [from (2)]
                 2         2   2
              v  (  o f)  [ (G)] and v  (  o f)  [ (G)]
                                           –1
                        –1
                    1      1            2      2
                        
              v  (f  o   ) [ (G)] and
                        1
                   –1
                        1   1
                        
                         1
                    –1
               v  (f  o   ) [ (G)]
                        2   2
                               –1
              v  f (G) and V  f (G)
                   –1
                                 –1
                 any v  V  v  f (G)
                            V  f (G)
                                 –1
                                           LOVELY PROFESSIONAL UNIVERSITY                                   49
   50   51   52   53   54   55   56   57   58   59   60