Page 254 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 254

Unit 23: Hilbert Spaces: The Definition and Some Simple Properties




          Theorem 2: If x and y are any two vectors in an inner product space then              Notes
                                |(x, y)|   x      y                               … (1)
          Proof: If y = 0, we get   y  = 0 and also theorem 1 implies that |(x, y)| = 0 so that (1) holds.
          Now, let y   0, then for any scalar   C we have

                            0    x –  y   2  = (x –  y,x –  y)
          But
                          (x –  y, x –  y) = (x, x) – (x,  y) – ( y, x) + ( y,  y)

                                       = (x, x) –    (x, y) –  (y, x) +    (y, y)
                                       =   x   –   (y, x) – (x, y) + | |    y   2
                                            2
                                                              2
               2
                                  2
                                      2
             x  –   (y, x) – (x, y) +| |   y  = (x,  y, x –  y)
                                               2
                                       =   x –  y     0                           … (2)
                                         (x,y)
          Choose                       =    2  , y 0, y  0 .
                                          y
             We get from (2)
                                               2
                    2  (x,y)(x y)  (x, y)  (x,y)   2
                   x        2       2  (x,y)   4  y   0
                          y       y          y
                                           2
                    2 |(x,y)| 2  |(x,y)| 2  (x,y)
                   x       2       2      2   0
                         y       y      y
                    2 |(x,y)| 2
                   x       2   0
                         y
                   x      y     |(x, y)| 2
                     2
                         2
          or     |(x, y)|     x      y  .
          This completes the proof of the theorem.

          Theorem 3:  If X  is  an  inner  product space, then  (x, x)   has the properties of  a norm, i.e.

            x   =  (x, x)  is a norm on X.
          Proof: We shall show that      satisfies the condition of a norm.


          (i)    x   =  (x, x)      x   = (x, x)   0 and   x  = 0    x = 0.
                                2
          (ii)  Let x, y   X, then
                                 x + y   2  = (x + y, x + y)

                                       = (x, x) + (x, y) + (y, x) + (y, y)        … (1)
                                       =   x   + (x, y) + (x, y)  +   y   2
                                            2
                                       =   x   + 2Re (x, y) +   y   2  [ (x,y) (x, y)  2Re(x,y)]
                                            2
                                           x   + 2|(x, y)| +   y   2  [ Re (x, y)   |(x, y)|]
                                            2



                                           LOVELY PROFESSIONAL UNIVERSITY                                   247
   249   250   251   252   253   254   255   256   257   258   259