Page 275 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 275

Measure Theory and Functional Analysis




                    Notes                                         n
                                   Let                       s  n  =   (x, f ) f i
                                                                       i
                                                                  i 1
                                   As shown for the case above for (s ), let
                                                              n
                                                             s    s  in H where we can take
                                                              n

                                                             s =    (x, f ) f n .
                                                                       n
                                                                  n 1
                                   We prove that s = s . Given   > 0 we can find n  such that    n   n .
                                                                        0              0
                                                             2
                                                          x, e  <  ,   s  – s   <  ,   s  s   <            … (1)
                                                                  2
                                                             i                  n
                                                                      n
                                                      i n o  1
                                   For some positive integer m  > n , we can find all the terms of s  in  s   also.
                                                         0   0                        n   m o
                                   Hence  s  s  contains only finite number of terms of the type (x, e ) e  for i = n  + 1, n  + 2, …
                                         m o  n o                                         i  i     0     0
                                                               2  2
                                   Thus, we get  s  s      x, e     so that we have
                                               m o  n o       i
                                                       i n o  1
                                                       s   s   <                                           … (2)
                                                        m o  n o

                                   Now                    s  – s  =  s  s m o  s m o  s n o  s n o  s

                                                                  s  s m 0  s m 0  s n 0  s n 0  s

                                                               <   +   +   = 3                  (Using (1) and (2))

                                   Since  > 0 is arbitrary, s  – s = 0 or s = s .
                                   Now consider
                                                 (x –   (x, e ) e , e) = (x – s, e)
                                                         i  i  j       j
                                   But                  (x – s, e) = (x, e) – (s, e)
                                                              j     j     j
                                                               = (x, e) – (lim s , e)                      … (3)
                                                                    j       n  j
                                   By continuity of inner product, we get
                                                       (lim s , e) = lim (s , e)                           … (4)
                                                           n  j       n  j
                                   Using (3) in (4), we obtain

                                                 (x –   (x, e ) e , e) = (x, e) – lim (s , e)
                                                         i  i  j    j       n  j
                                   If e   S, then
                                     j
                                                                   n
                                                          (s , e) =   (x, e ) e , e   = 0
                                                           n  j         i  i  j
                                                                   i 1
                                                      lim (s , e ) = 0
                                                             j
                                                          n
                                                      n

          268                               LOVELY PROFESSIONAL UNIVERSITY
   270   271   272   273   274   275   276   277   278   279   280