Page 324 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 324

Unit 30: Projections




          Thus   Pz P x y                                                                       Notes
                                Px Py

                                Px x   y N

             Pz,z  x,z      Pz = P x+y  x,P being projection on H

                          x,x y
                          x,x  x,y

                          x  2

          and  Pz*,z  z,Pz

                                 x y,x  x,x  x,y

                        2
                                 x .
          Hence  Pz,z  Pz*,z  z H

                   P P * z,z  0 z H


                  P P* 0 i.e. P  P *
                 P is self adjoint.

          Further,  M  N  N  M

          If  N M , then N is a proper closed linear subspace of the Hilbert space M and therefore   a
          vector z 0  0 M  s.t. z 0  N.
          Now z    M and z    N and H = M   N.
               0         0
              z  H  z   0,  a contradiction.
              0      0
          Hence  N  M
          Conversely, let  P* P,x,y be any vectors in M and N respectively. Then

                  x,y   Px,y


                                     x,P * y  x,Py
                                     x,0  0

            M   N.
          This completes the proof of the theorem.
          Theorem 2: If P is the projection on the closed linear subspace M of H, then

           x M    Px  x   Px   x .
          Proof: We have, P is a projection on H with range M then, to show  x  M  Px  x.




                                           LOVELY PROFESSIONAL UNIVERSITY                                   317
   319   320   321   322   323   324   325   326   327   328   329