Page 78 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 78

Unit 6: Minkowski Inequalities




          6.4 Review Questions                                                                  Notes

          1.   If f, g are square integrable in the Lebesgue sense, prove that f + g is also square integrable
               and

                                         f + g       f   +   g  .
                                             2    2     2
          2.   If | < p <  , then show that equality can be true, iff there are non-negative constants   and
                , such that  f =  g.

          6.5 Further Readings





           Books      Books: Stein, Elias (1970).  Singular  Integrals and  Differentiability  Properties  of
                      Functions. Princeton University Press.
                      Hardy,  G.H.;  Littlewood,  J.E.;  Polya,  G.  (1952).  Inequalities,  Cambridge
                      Mathematical Library (second ed.). Cambridge: Cambridge University Press.



          Online links  Mathworld.wolfram.com>Calculus and Analysis>Inequalities
                      Planet math.org/Minkowski In-equality.html
















































                                           LOVELY PROFESSIONAL UNIVERSITY                                   71
   73   74   75   76   77   78   79   80   81   82   83