Page 277 - DCOM203_DMGT204_QUANTITATIVE_TECHNIQUES_I
P. 277

Quantitative Techniques – I




                    Notes                     2             2  2    2    2  2  2  2
                                            E r   2npE r  n p    E r   2n p   n p
                                                    2
                                            E r  2  n p 2                                          .... (1)
                                                                    2
                                       Thus, to find we first determine E(r ).
                                                     n
                                                                                   r
                                                                               n
                                                         . C p q
                                       Now,     E r  2  r 2 n  r  r  n r  r r  1  r    C p q  n r
                                                                                 r
                                                     r  1
                                          n       n         n             n  r r  1 !
                                                                                  n
                                                               n
                                                      r
                                                                                       r
                                                                   r
                                            r r  1 C p q n r   . r C p q n r         . p q n r  np
                                                    r            r
                                         r  2               r  1          r  2 !r n r  !
                                           n                          n
                                                   ! n      r  n r      n n  1 . n  2 !  r  n r
                                                          . p q  np                    . p q  np
                                          r  2 r  2 ! n r  !          r  2 r  2 ! n r  !
                                                   n     n  2 !
                                          n n  1 p 2               . p r  2 q n r  np

                                                   r  2 r  2 ! n r  !
                                                 2
                                         n n  1 p q   p  n  2  np  n n  1 p  2  np
                                       Substituting this value in equation (1), we get
                                         2          2       2  2
                                            n n  1 p   np n p    np  1 p  npq
                                       Or the standard deviation = npq
                                       Remarks:   2  npq  mean q , which shows that since 0 < q <1.
                                   3.  The values of   ,   ,   and
                                                    3  4  1    2
                                       Proceeding as above, we can obtain
                                                   3
                                            E r  np  npq q  p
                                         3
                                                   4   2 2 2
                                            E r  np  3n p q   npq  1 6pq
                                         4
                                                          2 2 2
                                                      2  n p q q   p  2  q  p  2
                                                      3
                                       Also       1   3       3 3 3
                                                      2      n p q       npq
                                       The above result shows that the distribution is symmetrical when
                                              1
                                       p = q =  , negatively skewed if q < p, and positively skewed if q > p
                                              2
                                                  2 2 2
                                                3n p q  npq  1 6pq     1 6pq
                                             4
                                         2   2         2 2 2        3   npq
                                             2        n p q
                                       The  above result shows  that the distribution  is  leptokurtic if  6pq <  1, platykurtic  if
                                       6pq > 1 and mesokurtic if 6pq = 1.
                                   4.  Mode: Mode is that value of the random variable for which probability is maximum.
                                       If r is mode of a binomial distribution, we have

                                        P(r – 1)    P(r)    P(r + 1)
                                       Consider the inequality P(r)    P(r + 1)







          272                               LOVELY PROFESSIONAL UNIVERSITY
   272   273   274   275   276   277   278   279   280   281   282