Page 303 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 303

Operations Research




                    Notes
                                                                     Table  14.4
                                                  Retailer's Demand               Probability
                                                      1000 pairs                      0.6
                                                      3000 pairs                      0.3
                                                      5000 pairs                      0.1

                                   1.  Compute the conditional monetary and expected monetary values.
                                   2.  Compute the expected profit with a perfect predicting device.
                                   3.  Compute the EVPI.

                                   Solution:
                                   We are given,
                                                 Cost per pair             =    ` 50
                                                 Selling price per pair    =    ` 100
                                                 Profit per pair           =    ` 50  (if, sold)
                                                 Disposal selling price    =    ` 20  (if, unsold)
                                                 Loss on each unsold pair  =    (50 – 20) = ` 30

                                   Conditional profit values are therefore computed by:
                                              CP = 50S         when  D > S
                                              50D – 30(S – D)  when  D < S
                                   where, CP = conditional profit, D = pairs demanded and S = pairs stocked.
                                   1.  The resulting conditional payoffs and corresponding expected payoffs are computed in
                                       the Table 14.5.
                                                                     Table  14.5

                                       Retailer’s   Probability   Conditional payoffs (`)    Expected payoffs (`)
                                        demand                 (Stock per week)         (Stock per week)
                                       (in pairs)           1000    3000    5000    1000    3000   5000 pairs
                                                            pairs   pairs   pairs   pairs   pairs
                                         1000       0.6      50     -10    -70      30       -6      -42
                                         3000       0.3      50    150     90       15       45       27
                                         5000       0.1      50    150     250       5       15       25
                                                                          EMV       50       54       10

                                       Thus, max EMV (EMV*) = 54
                                   2.  The Expected Profit with Perfect Information (EPPI) is computed below:
                                                                     Table  14.6


                                     Retailer’s demand  Probability   Conditional payoffs   Under perfect information
                                         (In pairs)    (i)   1000 pairs  3000 pairs  5000 pairs  Max payoff  Expected payoff
                                                                (ii)    (iii)    (iv)     (v)      (i) 2 × (v)
                                          1000         0.6      50      -10      -70      50         30
                                          3000         0.3      50      150      90       150        45
                                          5000         0.1      50      150      250      250        25
                                                                                      EPPI           100



          298                               LOVELY PROFESSIONAL UNIVERSITY
   298   299   300   301   302   303   304   305   306   307   308