Page 126 - DMTH201_Basic Mathematics-1
P. 126

Unit 4: Determinants




                                                                                                Notes
                       23 18 11
                     1
               (a)     23 22 39
                    92
                       23   6 19

                       92   6 11
                     1
               (b)     23 22 39
                    23
                       23 18 19

                       18 23 23
                     1
               (c)     22 11 39
                    92
                        6   6 19

                       21 18 11
                     1
               (d)     23 22 39
                    46
                       23   6 19
          Fill in the blanks:

          6.   …………… is a numeric value that indicate singularity  or non-singularity of a  square
               matrix.
          7.   A …………… of an element a  denoted by m  is a subdeterminant of |A| obtained by
                                       ij           ij
                                  th
                         th
               deleting its i  row and j  column.
          8.   A …………… of an element a  denoted by c  is its minor with appropriate sign.
                                       ij         ij
          9.   …………… of a square  matrix A is the  transpose of the matrix of the  cofactors of the
               element of A and is denoted by AdjA.
          10.  Minor of an element of a determinant of order n(n   2) is a determinant of order ……………

          4.14 Review Questions

          1.   Find  the  adjoint  and  inverse  of  the  following  matrices  and  verify  that
                  (Adj  )    (Adj  )            I.
                               A
                                 A
                                       A
                A
                      A
                      2   1  3              1   1  1              1   1  2
               (a)    0  1   2         (b)  2   1 4          (c)   2  1   1
                      2  3   1              0   1  3               3  1   2
          2.   Using Cramer’s rule, solve the following equations:

               (a)  3x  y  2z  13             (b)     x  2y  z  1
                    2x  y  z  3                       x  y  2z  3
                    x  3y  5z  8                      3x  2y  3z  5


               (c)  x  3y  2z  5              (d)     x  y  2z  9
                    2x  y  z  3                       3x  2y  z  10
                    5x  2y  3z  6                     x  2y  3z  14





                                           LOVELY PROFESSIONAL UNIVERSITY                                   119
   121   122   123   124   125   126   127   128   129   130   131