Page 20 - DMTH201_Basic Mathematics-1
P. 20

Unit 1: Trigonometric Functions-I




          1.5 Summary                                                                           Notes

          Inverse of a trigonometric function exists if we restrict the domain of it.
                 –1
          (i)   sin  x = y if sin y = x where –1   x  1,

          (ii)   cos  x = y if cos y = x where –1   x   1, 0   y
                 –1
          (iii)  tan  x = y if tan y = x where x   R,
                 –1
                 –1
          (iv)  cot  x = y if cot y = x where x   R, 0 < y <
                 –1
          (v)   sec  x = y if sec y = x where x   1,

                   –1
          (vi)  cosec  x = y if cosec y = x where x   1,0 < y

               or


          Graphs  of  inverse  trigonometric  functions  can  be  represented  in  the  given  intervals  by
          interchanging the axes as in case of y = sin x, etc.

          1.6 Self Assessment


          Multiple Choice  Questions
          1.   The Principal value of

               (a)              (b)              (c)             (d)

          2.             equals to
               (a)              (b)              (c)             (d)

          3.                    is equal to

               (a)              (b)              (c)             (d)
                   –1
          4.   If sin  x = y then
               (a)   o   y   p   (b)             (c)   o < y < p   (d)


          5.                 is equal to
               (a)              (b)              (c)             (d)

          6.                     is equal to

               (a)              (b)              (c)   o         (d)
          Fill in the blanks:
          7.   Inverse trigonometric function is also called as ………………
          8.   The value of an inverse trigonometric functions which lies in its principal value branch is
               called as ……………… of that inverse trigonometric functions.


                                           LOVELY PROFESSIONAL UNIVERSITY                                    13
   15   16   17   18   19   20   21   22   23   24   25