Page 29 - DMTH201_Basic Mathematics-1
P. 29
Basic Mathematics – I
2
2
Notes Also cos 2A = cos A – sin A
2
= 1 – sin A – sin A
2
2
i.e., cos 2A = 1 – 2sin A
2
Dividing the numerator and denominator of R.H.S. by cos A, we have
(c) To express tan 2A in terms of tan A.
tan 2A = tan(A + A) =
=
Thus we have derived the following formulae :
sin 2A = 2sin A cos A =
2
2
cos 2A = cos A – sin A = 2cos A – 1 = 1 – 2sin A
2
2
tan 2A =
2
cos A = sin A =
2
Example: If verify the following:
(i) 2tan A = 2sin 2A 2sin A cos A =
(ii) cos 2A cos A sin 2A 2cos A 1 1 2sin A =
Solution
(i) sin2A =
2sinAcosA =
=
22 LOVELY PROFESSIONAL UNIVERSITY