Page 290 - DMTH201_Basic Mathematics-1
P. 290

Unit 10: Logarithmic Differentiation




                                                                                                Notes
                 Example: Find:

                                               3
                                          d   t sin  2  t
                                                      .
                                          dt  (t  1)(t  2)  2
          Solution:

          Let:
                       3
                      t sin 2  t
                  y           .
                     (t  1)(t  2) 2
                 Utilizing   logarithmi    c  differenti ation   we   get :
                          3
                          t sin 2  t
                                    ln
                 ln  y  ln         3 t  2 sinln  t  ln (t  1)  2 ln (t  2),
                        (t  1)(t  2)  2
                  1 dy  3   cos t  1   2         3   1    2
                  y  dt  t  2  sin t  t  1  t  2  2cot t  t  t  1  t  2  ,
                       3
                  d   t sin 2  t  dy
                  dt  (t  1)(t  2) 2  dt
                                        3   1    2
                                y  2cot  t
                                        t  t  1  t  2
                                   3
                                  t sin 2  t  2cot t  3  1  2  .
                                (t  1)(t  2) 2   t  t  1  t  2


                 Example: Find an equation of the tangent line to the curve:

                      1  x  1  2 x  1  3 x
                  y
                            1  6 x
                 at x = 0.
          Solution:

                    1 x  1  2x  1  3x  (1  ) x  1/2 (1  2  ) x  1/2 (1  3x ) 1/2
                y                                           .
                                                  1/2
                    1 x  1 1 2x   3x  (1  ) x  1/2 (1  6x ) ) x  1/2 (1  3x ) 1/2
                            6x 1
                                             (1 2
                y                                 1/2       .
                          1  6x              (1  6x )
               Employing   logarithmi    c  differenti ation   we   obtain :
                Employing logarithmi c  differenti ation  we  obtain :
                ln  y  1  ln  1 (  ) x  1  ln (1  2x )  1  ln (1  3x )  1  ln (1  6x ),
                     2        2         2        2
                ln  y  1  ln  1 (  ) x  1  ln (1  2x )  1  ln (1  3x )  1  ln (1  6x ),
                y'   2  1    1 2    3   2  3  ,  2
                y
                y'  2(1 1  ) x  1  1 2x  2(1  3 3x )  1  3 6x
                y   2(1  ) x  1  2x  2(1  3x )  1  6x  ,
                y'  y  1      1      3      3   .
                     2(1  ) x  1  2x  2(1  3x )  1  6x
                y'  y  1      1      3      3   .
                     2(1  ) x  1  2x  2(1  3x )  1  6x
                At x  0  we  have y  1  0  1  2(0)  1  3(0)  1  6(0)  1.  Thus  the  slope  of  the  tangent  line is :
              At  x    0  we   have   y  1  0  1  2(0)  1  3(0)  1  6(0)  1.   Thus   the   slope   of   the   tangent  line is    :
                y'        (1)  1      1       3       3     0.
                  x  , 0 y  1  1 ( 2  ) 0  1  2(0)  1 ( 2  3 (0))  1  6(0)
                y'        (1)  1      1       3       3     0.
                  x    , 0 y  1  1 ( 2  ) 0  1  2(0)  1 ( 2  3 (0))  1  6(0)
          Consequently the equation of the tangent line is y – 1 = 0(x – 0) or y = 1.


                                           LOVELY PROFESSIONAL UNIVERSITY                                   283
   285   286   287   288   289   290   291   292   293   294   295