Page 348 - DMTH201_Basic Mathematics-1
P. 348

Unit 13: Maxima and Minima




                                                                3
          4.   Find the nature of point of inffexion if y = 20 + 5x + 12x    2x , then x =      Notes
                                                           2
               (a)  2                            (b)  3
               (c)  4                            (d)  -2
                               4
          5.   Find minima if y = x    6x  + 1
                                    2
               (a)   3                           (b)   2

               (c)   10                          (d)   9

          13.6 Review Questions

          1.   Fluid maxima/minima of the following functions, by using only first derivative.

               (i)  y  x 2  10x  15              (ii)  y  x 3  3x 2  9x  20
                       4
               (ii)  y  x  3  (x  2)
          2.   Find maxima, minima and point of inflexion, if any, of the following functions:

               (i)  y  x 3  6x  2  12x  1        (ii)  y  2x 3  3x 2  4

               (iii)  y  x 4  4x 3  8x 2         (iv)  y  3x 5  5x 3
               (v)  y  x 4  2x 2                 (vi)  y  x 2 / 3  x 1/ 3

                       x 2
               (vii) y                           (viii) y  x 4  4x 3  16x
                      x 2  1
                                                        1  4  2
               (ix)  y  x 3  3x  2  5            (x)  y  x   x  1
                                                        2
          3.   Find the absoute maxima/minima of the following functions:

               (i)  y  8x  x 2     on   [1, 5]
                       3
               (ii)  y  x  7       on   [–1, 3]
                       4

               (iii)  y  4 x 2     on   [–2, 1]

               (iv)  2  x          on   [–2, 2]
               (v)  2  x           on   [4, 7]

                       1
               (vi)  y  x 2 (4 x )  on  [0, 3]
          4.   (a)   If  y  x  4  4x  3  6x  2  4x  3 , show that y has a minimum at x = 1.

               (b)  If  y  x 5  5x 4  10x 3  10x 2  5x  10 ,  show  that  y  has  an  inflexional  value  at
                    x = –1.
          5.   Find maxima, minima and the point of inflexion for the function  y  x 3  3x 2  9x  27 .
               Show these points on a graph.
               If the domain of the functions is [–2, 2], find maxima/minima.




                                           LOVELY PROFESSIONAL UNIVERSITY                                   341
   343   344   345   346   347   348   349   350   351   352   353