Page 12 - DMTH202_BASIC_MATHEMATICS_II
P. 12

Unit 1: Integration




          Before starting, however, let us remind some helpful trigonometric identities.        Notes
                                           2
                                                                             2
                                                 2
          The first is the Pythagorean Identity: sin  + cos  = 1. If we divide all terms by cos , then we
          have:
             2
                    2
           sin   cos   1
                                         2
                                 2
                            tan    1 sec  .
                                      
                    2
             2
           cos   cos   cos 2
          The well-known trigonometric identities
           a 2   a 2  sin  2   t  a  2  cos 2   t    1
           a 2   a 2  tan 2   t  a 2  sec 2   t    2
           a 2  sec  2    t   a 2  tan  2    t    3
          may be used to eradicate radicals from integrals. Particularly when these integrals entail  a   x  2
                                                                                  2
                    2
                2
          and  x   a .
          1.   For   a  x 2  set  x   a sin   t . In this case we converse regarding sine-substitution.
                     2
          2.   For   a   x 2   set    x   a tan   t . In this case we converse regarding tangent-substitution.
                     2
          3.   For  x   a  set  x   a sec   t . In this case we converse regarding secant-substitution.
                        2
                     2
                         2
                            2
                                      2
                                   2
          The expressions  a   x  and  x   a   should be observed as a constant plus-minus a square of a
                                                                2
          function. Here, x displays a function and a a constant. For example, x   2x   3 can be observed as
          one of the two previous expressions. Certainly, if we complete the square we obtain
                         2
           2
                  3
          x   2x    x    1   2
                                                              1
                2
          where a  = 2. Thus from the above substitutions, we will set  x    2 tan   t .
          The following examples exemplify how to apply trigonometric substitutions:
                                     2
                 Example: Find  x  3  4 x dx
                                  
                             
          Solution:
          It is simple to observe that sine-substitution is the one to use. Set  x   2sin   t  or equivalently
          t   sin   1   /2x  .  Then  dx   2cos   t dt  which provides us

                  2
             x  3  4 x dx    8sin  2    4 4sint    2   2 cost    .t dt
                
          Easy calculations provide
                  2
                
                        
             x  3  4 x dx   32 sin  2   cost  2    .t dt
          Technique of integration of powers of trigonometric functions give
            sin  3   cost  2   t dt    1 cos  2    cost  2   sint    t dt

          which recommends the substitution  v   cos   t . Hence  dv   sin   t dt  which implies

                                                 v 3  v 5
                 2
                                         2
                                            2
                        2
            1 cos    cost    sint    t dt     1 v v dv           . C
                                                  3   5
                                           LOVELY PROFESSIONAL UNIVERSITY                                    7
   7   8   9   10   11   12   13   14   15   16   17