Page 81 - DCAP504_Computer Graphics
P. 81

Computer Graphics



                          Consider a point coordinate (x, y), represented in the matrix form as,
                              x 
                          P=     
                              y 

                          Let, P’ be the coordinate after shear transformation,
                          P’=Sh.P
                          Here, Sh can be either X or Y-shear.
                          If it is X-shear then,
                             1    a  x 
                          P’=        
                                   
                              0  1   y 
                              + ayx  
                          P’=    
                                   
                               y  
                          If it is Y-shear then
                              1   0  x 
                          P’=        
                                   
                              b  1   y 
                               x  
                          P’=     
                              bx + y 
                                             Consider a rectangle object with point coordinates (0, 0), (2, 0), (2, 2) and (0, 2).
                                             The rectangle undergoes X-shear with the shear factor value 1.
                                             The shear transform matrix for X-shear is given as,

                                                 1    a  1   1
                                                =
                                             Sh x     =     
                                                      
                                                  0  1    0  1 
                                             Here, the value of the shear factor, a=1.
                                             After multiplying the point coordinates of the rectangle with the X-shear
                                             transform matrix individually we obtain the following coordinate points that
                                             define the rectangle after X-shear transform are (0, 0), (2, 0), (4, 2) and (2, 2).
                                             If the value of a=-1, then the X-shear transform matrix is given as,
                                                 1  −1 
                                             Sh x     
                                                =
                                                  0  1  
                                             Then the value of the rectangle after X-shear transform are (0, 0), (2, 0), (0, 2)
                                             and (-2, 2).






















                          74                      LOVELY PROFESSIONAL UNIVERSITY
   76   77   78   79   80   81   82   83   84   85   86