Page 274 - DMTH201_Basic Mathematics-1
P. 274
Unit 10: Logarithmic Differentiation
Notes
dy g x
y f x g x log f x
dx f x
dy g x g ( ) x
i.e., f x f x g x log f x
dx f x
dy
This method of finding is called Logarithmic differentiation.
dx
(ii) Let y a f x
Taking logarithms, we get
log y f x log a
Differentiate w.r.t. x
1 dy
log a f x
y dx
dy f x
y log a f x a log a f x
dx
Example: Differentiate the following w.r.t. x :
x x x
x
1. x x 2. x 3. x
to
. . . x
x
x
4. 3 x 5. x
Solution:
1. Let y x x
Taking logs, we get
log y x log x
Differentiate w.r.t. x
1 dy 1
x log x 1
y dx x
dy
y 1 log x
dx
dy x
i.e., x 1 log z
dx
LOVELY PROFESSIONAL UNIVERSITY 267