Page 274 - DMTH201_Basic Mathematics-1
P. 274

Unit 10: Logarithmic Differentiation




                                                                                                Notes
                   dy     g x
                       y       f x   g x   log f x
                   dx     f x

                   dy       g x  g ( ) x
               i.e.,    f x           f x   g x  log f x
                   dx           f x

                                   dy
               This method of finding    is called Logarithmic differentiation.
                                   dx
          (ii)  Let  y  a  f x
               Taking logarithms, we get

               log y  f x  log a

               Differentiate w.r.t. x
                1 dy
                      log a f x
               y dx

                   dy                   f x
                       y  log a f x    a    log a f x
                   dx


                 Example: Differentiate the following w.r.t. x :
                              x             x  x
                             x
          1.  x  x       2.  x         3.  x

                               to
                               . . . x
                              x
                             x
          4.  3 x        5.  x
          Solution:
          1.   Let  y  x x
               Taking logs, we get

               log y  x log x

               Differentiate w.r.t. x

                1 dy    1
                     x     log x  1
               y dx     x

                   dy
                       y  1 log x
                   dx

                   dy   x
               i.e.,   x  1 log z
                   dx






                                           LOVELY PROFESSIONAL UNIVERSITY                                   267
   269   270   271   272   273   274   275   276   277   278   279