Page 282 - DMTH201_Basic Mathematics-1
P. 282

Unit 10: Logarithmic Differentiation




                                                                                                Notes
                                                 1/x
                                           3x  2  5  6x 2  3x 2  5 ln 3x 2  5
                                        =             2  2   1
                                                     x  (3x  5)
                                 2
          (Combine the powers of (3x  + 5).)
                                                 (1/x  1)
                                           3x  2  5   6x 2  3x 2  5 ln 3x  2  5
                                        =
                                                          x 2

                                          x
                 Example: Differentiate  y  (sin )x  3
          Solution:

          Because  a variable  is  raised  to  a  variable  power  in  this  function,  the  ordinary  rules  of
          differentiation do not apply ! The function must first be revised before a derivative can be taken.
          Begin with
                                      y = (sin )x  x 3
          Apply the natural logarithm to both sides of this equation getting

                                    ln y = ln(sin )x  x 3

                                        = x 3  ln(sin )
                                                 x
          Differentiate both  sides of  this equation. The left-hand  side requires  the chain  rule since  y
          represents a function of x. Use the product rule and the chain rule on the right-hand side. Thus,
                                        x
          beginning with truein  ln y  x  3  ln(sin )  and differentiating, we get

                                               1
                                                                 x
                                     y  = x 3     cos x  3x 2  ln(sin )
                                    y        sinx
          (Get a common denominator and combine fractions on the right-hand side.)

                                           x 3  cosx        sinx
                                                          x
                                        =         3x 2  ln(sin )
                                            sinx            sinx
                                                             x
                                                        x
                                           x 3  cosx  3x 2  sin ln(sin )
                                        =
                                                   sinx
          Multiply both sides of this equation by y, getting
                                                               x
                                                         x
                                            x 3  cosx  3x 2  sin ln(sin )
                                     y = y
                                                    sinx
                                                3 x 3  cosx  3x  2  sin ln(sin )
                                                              x
                                                                   x
                                        = (sin )x  x
                                                        (sin ) 1
                                                           x
          (Combine the powers of (sin x).)
                                                3
                                                x  1  3      2
                                                                      x
                                        = (sin )x  x  cosx  3x  sin ln(sin )
                                                                x




                                           LOVELY PROFESSIONAL UNIVERSITY                                   275
   277   278   279   280   281   282   283   284   285   286   287