Page 72 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 72

Unit 3: Linear Programming Problem – Simplex Method




          Step 3: Bring the objective function into a standard form.                            Notes
                 Maximise ‘Z’ = – 12x  – 20x  – x  + x  – Mx  – Mx
                                 1    2  3   4    5    6
          Step 4: Fit the data into a matrix form.

                                              x 1  
                                               
                    Y 1  Y 2  S 1  S 2  a 1  a 2     x 2  
                     x  x  x  x  x   x      x      100
                A      1  2  3  4  5  6    X     3     B       
                    6  8  1  0   1  0      x      120 
                                           4  
                     7  12  0  1  0  1     x 5
                                               
                                              x  
                                               6  
          Step 5: First iteration of Simplex Method.
             BV    CB     XB       Y1        Y2      S1   S2   a1   a2    Min. Ratio
             a1    –M    100       6         8       –1   0   1    0     100/8 = 12.5
             A2    –M    120       7         12      0   –1   0    1   120/12 = 10(KR)
                          Zj     –100M      –120M
                          Cj       12        –20
                        Zj – Cj   –100M + 12   120M+20
                                                   ( KC)
          Therefore,               Z = C X
                                        B  B
                                     = –100M – 120M

                                     = –220M
          Step 6: Second iteration of Simplex Method.
             B   CB      XB           Y1         Y2    S1   S  a1   a2    Min. Ratio
             V                                             2
             a1   –M   100–10 (8) = 20   6–0.5(8) = 1.33   8–1(8) = 0   –   –   –   –   20/1.33 = 15.04(KR)
             y2   –20   120/12 = 10   7/12 = 0.58   12/12 = 1   –   –   –   –   10/0.58 = 17.24
                         Zj      –1.33M–11.6–12   –20
                         Cj                     –20
                        Zj – Cj   –1.33M + 0.4   0
                                          ( KC)
          Therefore,               Z = C X
                                        B  B
                                     = (–M × 20) + (–20 × 10)
                                     = –20M – 200
          Step 7: Third iteration of Simplex Method.

            BV   CB         XB               Y1         Y2    S1   S2   a1   a2   Min.
                                                                                Ratio
             y1   –12   20/1.33 = 15.04   1.33/1.33 = 1   0   –   –   –   –      ––
             y2   –20   10 – 15.04 (90.58) = 1.28   0.58–1(0.58) = 0   1   –   –   –   –   ––
                            Zj               –12        –20
                            Cj               –12        –20
                           Zj – Cj           0           0

                                     Z = C X
                                          B  B



                                           LOVELY PROFESSIONAL UNIVERSITY                                   67
   67   68   69   70   71   72   73   74   75   76   77