Page 158 - DECO403_MATHEMATICS_FOR_ECONOMISTS_ENGLISH
P. 158

Unit 9: Maxima and Minima: One Variable





                                                                                                       Note
                 2
                dy                                          1
                     = – ey  is negative, therefore for the function x =    is maximum
                dx 2                                        e
                                                       1
               Thus, in the referred function replacing with x =
                                                       e

                                  1/e
                               §  1 ·
                               ¨  1  ¸
                                         1/e
               Maximum value =   ¨  ¸   = (e)    is proven.
                               ©  e ¹
                                                    log x
               Example 8: Find out the maximum value of    where 0 < x < ∝∝ ∝∝ ∝
                                                     x

                                      log x
               Solution: Assume that y =
                                       x
                                        dy   x .(1 / ) (log ).1  1log x
                                                  x
                                                        x


                                        dx   =     x 2       =   x 2
                                        2
                                       dy   =  x 2 (1 / ) (1 log ).2x
                                                            x
                                                   x



                                       dx 2          x 4
                                                      x
                                                x    2x    2 log x  2 log x    3
                                           =
                                                   x 4          x 3
                                        dy     1log x

               Putting ,                   =0 ,        = 0 or 1 – log x = 0  or log x = 1 = log e, ∴ x = e
                                        dx       x 2
                                        2
                                       dy    2log e    3  2    3  1
               At x = e                    =                     3   is negative
                                       dx 2     e 3     e 3   e
                                                                         log e  1
               Therefore, at x = +e, function is maximum and  its maximum value is =     .
                                                                           e   e
               Example 9: If at extremum values of x = –1 and x = 2 are  y = a log x + bx  + x then find out the value
                                                                        2
               of a and b.
                                                  dy     1
               Solution: y = f(x) = a log x + bx  + x  ⇒   = a.    + 2bx + 1
                                        2
                                                  dx     x
                            dy
               For extremum     = 0,
                            dx
                                    §  dy ·   §  dy ·
                                    ¨   ¸   = 0,  ¨  dx  ¸   = 0
                                    ©  dx ¹    1  ©  2 ¹
               ⇒                  – a – 2b + 1 = 0                                          ...(i)
                                 a
                                §·
               Or               ¨¸  + 4b + 1 = 0                                           ...(ii)
                                 2
                                ©¹



                                                 LOVELY PROFESSIONAL UNIVERSITY                                  151
   153   154   155   156   157   158   159   160   161   162   163