Page 174 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 174

VED1
          E\L-LOVELY-H\math9-1 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth  10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV                                dy        dy
                                                         ( +)       ( +
                                                       −  dx  1     dx  2
                                ⇒              *   *    ,   ( +

                                               a
                                              
                                rFkk            , $  ,   ( +
                                               2
                                              
                                 
  vkSj  

  dks gy djus ij
                                                               1
                                                    ( *  )   ( *                                            mÙkj
                                                               2

                                mnkgj.k 10- iQyu      
  #    
 3   3 #   osQ mfPp"B ;k fufEu"B eku Kkr dhft,A
                                gy % eku yhft,             (   ,
                                                       dy
                                ∴                          (   ,
                                                       dx
                                dy
                                dx   ( + izfrLFkkfir djus ij]   ,    
     ( +
                                                               1
                                ;k                     
    ( *
                                                               2
                                                              π 2  π 4                                    π  π 2
                                vr%                        (    ,                  A  + @   @  πB  ⇒    (   ,
                                                              3  3                                        3  3
                                                        2
                                                      dy
                                vc                       2   ( * $
                                                      dx
                                           π
                                (1) tc   (
                                           3
                                 2
                                dy            2 π         3
                                dx 2   ( * $ 
 
   3  =− 4       2        =− 2 3  Í.kkRed

                                                             π
                                ∴                          (    ij iQyu mfPp"B gSA
                                                             3
                                                  π
                                vkSj fn;s iQyu esa   (    izfrLFkkfir djus ij] iQyu dk mfPp"B eku
                                                  3
                                                             π        π 2  π   3   π 2  +  3 3
                                                           (    , 
 
   =   +    =                          mÙkj
                                                             3        3   3   2       6
                                                  2
                                           2 π   dy            4 π
                                (2) tc   (     rks    ( * $
                                           3     dx 2          3
                                                                   3  
                                                           (* $  −         (   3  /ukRed
                                                                
                                                                
                                                                   2  
   169   170   171   172   173   174   175   176   177   178   179