Page 332 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 332

VED1
          E\L-LOVELY-H\math21-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12 VIIth 11-5-13



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV                    ;fn lkjf.kd dh fdlh ,d gh iafDr vFkok LrEHk dks fdlh jkf'k ls xq.kk djrs gSa rks iwjs
                                           lkjf.kd dks ml jkf'k ls Hkkx dj nsuk pkfg,A

                                  mnkgj.kkFkZµ
                                                      a 1  b 1  c 1     ka 1  kb 1  kc 1
                                                     a 2  b 2  c 2  4  1  a 2  b 2   c 2
                                                     a 3  b 3  c 3   k   a 3   b 3   c 3

                                  5-  ;fn lkjf.kd esa fdlh iafDr vFkok LrEHk dk izR;sd vo;o nks jkf'k;ksa dk ;ksxiQy gks rks ml lkjf.kd
                                      dks mlh dksfV osQ nks lkjf.kdksa osQ ;ksxiQy osQ :i esa iznf'kZr fd;k tk ldrk gSA

                                  mnkgj.kkFkZµ
                                                     a +  p   b 1  c 1    a 1  b 1  c 1   p   b 1  c 1
                                                      1
                                                      a +  q  b 2  c 2  4  a 2  b 2  c 2 3   q  b 2  c 2
                                                       2
                                                      a +  r  b 3  c 3    a 3  b 3  c 3   r   b 3  c 3
                                                       3
                                  6-  ;fn lkjf.kd dh fdlh iafDr vFkok LrEHk dks lHkh vo;oksa dks fdlh fuf'pr jkf'k ls xq.kk djosQ
                                      fdlh vU; iafDr vFkok LrEHk osQ laxr vo;oksa esa tksM+ vFkok ?kVk fn;k tk;s rks lkjf.kd dk eku
                                      vifjofrZr jgrk gSA
                                  mnkgj.kkFkZµ∆′ 4 ∆, tcfd
                                            a +  1  mb −  1  nc 1  b 1  c 1  a 1  b 1  c 1
                                           a +  2  mb −  2  nc 2  b 2  c 2          ∆  =  a 2  b 2  c 2
                                            a +  3  mb −  3  nc 3  b 3  c 3  a 3  b 3  c 3

                                lkjf.kd osQ iz'uksa dks gy djus esa bl xq.k dk fo'ks"k egÙo gSA bl xq.k osQ vuqlkj lkjf.kd esa] fdlh iafDr
                                osQ vo;oksa esa fdlh vU; iafDr vFkok iafDr;ksa osQ laxr vo;oksa dk fdrus gh xquk tksM+k vFkok ?kVk;k tk
                                ldrk gSA ;gh fØ;k LrEHkksa esa Hkh dh tk ldrh gSA

                                21-7 nks lkjf.kdksa dk xq.kuiQy  !            
    "


                                nks lkjf.kdksa dk xq.kuiQy osQoy mlh n'kk esa Kkr fd;k tk ldrk gS tc os nksuksa leku dksfV
                                       osQ gksa] vU;Fkk ughaA
                                                     a 1  b 1  c 1        x 1  y 1  z 1
                                            ekuk   4  a 2  b 2  c 2        B =  x 2  y 2  z 2
                                                    a 3  b 3  c 3         x 3  y 3  z 3

                                r`rh; dksfV  *            osQ nks lkjf.kd gSaA budk xq.kuiQy] tks  
 ls O;Dr fd;k tkrk gS] ,d r`rh;
                                dksfV dk gh lkjf.kd gksxk ftls fuEu izdkj Kkr djrs gSaµ
                                igys lkjf.kd   dh igyh iafDr          dks fLFkj j[kdj blosQ vo;oksa dh] nwljs lkjf.kd 
 dh igyh]

                                nwljh rFkk rhljh iafDr osQ laxr vo;oksa ls vyx&vyx xq.kk djks vkSj muosQ vyx&vyx ;ksxiQy Kkr djks
                                tSlk uhps fn[kk;k x;k gSµ
   327   328   329   330   331   332   333   334   335   336   337