Page 127 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 127

VED1
          E L-LOVELY-H math7-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






                                                                          fJekJh^7 L ;wo{g cbB ns/ :{bo; gqw/:

                3H e'p^v'rb; cbB ;hHJhHn?;H T[sgkdB cbB dk jh fJZe ftP/P o{g j[zdk j?. i/eo ;hHJhHn?;H   B'N
                cbB α & 10 ftZu oZy fdzd/ jK sK e'p^v'rb; cbB gqkgs j' ikJ/rk.
                4H ;hHJhHn?;H T[sgkdB cbB d/ g?okwhNo; dk nB[wkB brkT[Dk n;kB j[zdk j?. fJ;d/ fJbktk
                fJ; cbB B/ e'p^v'rb; cbB dhnK ;kohnK ;wZf;nktK ns/ M{mhnK wkBsktK B{z d{o eo fdZsk
                j?.

                7H4H3 ;hHJhHn?;H T[sgkdB cbB dhnK ;hwktK  (Limitations of C.E.S. Production
                Function)
                Gkt/A fe ;hHJhHn?;H T[sgkdB cbB  B/ e'p^v'rb; cbB dhnK ;kohnK ;wZf;nktK  ns/ M{mhnK
                wkBsktK B{z d{o eo fbnk j? ns/ noEPk;so ftZu th fJ;dk y/so ftnkge j?, gozs{ fco th
                fJ; dhnK j/mbhnK nkb'uBktK ehshnK iKdhnK jB^

                1H ;hHJhHn?;H T[sgkdB cbB th e'p^v'rb;  dh soQK T[sgZsh d/ e/tb d' ;kXBK (fwjBs  ns/
                g{zih) B{z b? e/ uZbdk j?. fJj T[sgZsh d/ tZX ;kXBK d/ bJh bkr{ BjhA j[zdk j?. gq'Hn?uHT[iktk
                (Prof. H. Uzawa) dk efjDk j? fe fJ; cbB B{z n^T[sgZsh d/ ;kXBK d/ bJh bkr{ eoBk w[Pfeb
                j?.
                T[dkjoD^i/eo x= A ab  T[sgkdB cbB j?, a ns/ b ;kXB d/ bJh wzr gsk eo' id'A fe T[jBK
                dhnK ehwsK P a  ns/ P b  ;fEo jB. i/eo wzr teo x = β - α p j'D sK ;kXB dh wzr ehwsK ns/
                ;fEo nze ftZu eh j't/rh<

                If  x= A ab   is  the  production  function,  find  the  factor  demand  for  ‘a’  and  ‘b’  when  their
                prices are P a  and P b . If the demand curve is x = β - a p what is the factor demand in terms of
                prices and constants.
                jZb (Solution)^fdZsk j'fJnk T[sgkdB cbB

                                             x = A ab
                                             1/2 1/2
                                               =  Aa b                                                HHHH(i)
                ;wheoD (i) B{z tZy^tZy o{g ftZu ‘a’ ns/ ‘b’ d/ ;zdoG ftZu fBy/VB eoB s/




                ns/                                                                                    HHHH(ii)

                ;wheoD (i) ns/ (ii) s'A

                                                                                           )
                                                                                                 ( x = A ab



                gozs{ n;hA ikDd/ jK fe






                iK

                                           LOVELY PROFESSIONAL UNIVERSITY                                               121
   122   123   124   125   126   127   128   129   130   131   132