Page 159 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 159

VED1
          E L-LOVELY-H math9-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






                                                                         fJekJh^9 L T[uso ns/ fBwBso L fJZe uo

                              2
                ∴                   3x  – 12x + 11 = 0                                            B'N
                                                     ××
                                                                ±
                                                   −
                                          12 ±  144 4 3 11    12 2 3
                                                             x =    =
                                                  6              6
                 ⇒                             x = 2  ±  1
                                               3
                                              1                     1
                ∴                                        x = 2 +           iK       x = 2 –
                                              3                     3
                                      2
                                    dy
                j[D                                    = 6x – 12
                                    dx 2
                        1
                x = 2 +    d/ bJh
                        3
                                      2
                                    dy         1 
                                           = 6 2 +     – 12 = 2 3  XBkswe
                                           
                                     dx 2      3 
                                              1
                                                            x = 2 +    T[Zs/ cbB fBwBso j?.
                                              3
                           1
                ns/ x = 2 –    d/ bJh
                            3
                                     2
                                    dy        1 
                                                        = 6 2 −     – 12 = – 2 3  foDkswe
                                           
                                    dx 2       3 
                                              2
                ∴                             x = 2 –     T[Zs/ cbB T[uso j?.
                                              3
                                             1
                    j[D fdZs/ j'J/ cbB ftZu x = 2 –    gqfs;Ekfgs eoB s/
                                              3
                                              1        1        1    
                                                                  2
                                                       2
                                  T[uso wkB =  2    − 1 −     − 2 −     − 3 −  
                                               3        3        3   
                                                 1        1           1            2
                                                                       1
                                                  =    1−       −        −−       =
                                                  3        3          3           33
                T[Zso
                                        x               1/e
                                       1
                T[dkjoD 7H f;ZX eo' fe     dk T[uso wkB (e)   j?.
                                      
                                       x
                                  x
                                  1
                jZb L wzB fbU y =  
                                  x
                                
                ‘e’ nXko s/ d'jK gZyK dk logarithm b?D s/
                                              x        1
                                              1
                                                                  -1
                                                      log y = log     = x log    = x log x  = – x log x
                                                       x
                                              x
                ‘x’ d/ ;kg/y fBy/VB eoB s/
                                   1 dy      1       
                                                      = –  x . + 1.log x
                                           
                                                      
                                   y dx      x       
                                     dy
                ∴                                   = – (1 + log x)y
                                     dx

                                           LOVELY PROFESSIONAL UNIVERSITY                                               153
   154   155   156   157   158   159   160   161   162   163   164