Page 161 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 161

VED1
          E L-LOVELY-H math9-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






                                                                         fJekJh^9 L T[uso ns/ fBwBso L fJZe uo

                                              2
                T[dkjoD 9H i/eo y = a log x + bx  + x d/ x = – 1 ns/ x = 2 T[Zs/ T[uso^fBwBso wkB   B'N
                (extremum values) jB sK a ns/ b d/ wkB gsk eo'.

                                        2
                jZb L y = f (x) = a log x + bx  + x      ⇒       dy  =  1  2 a. +  1bx +
                                                      dx    x
                                     dy
                T[uso^fBwBso d/ bJh,   = 0,
                                     dx



                 ⇒                                                                                      ....(i)

                ns/                                                                                    ....(ii)

                (i) ns/ (ii) B{z jZb eoB s/
                                                        1
                                                                      a = – 2, b = –              T[Zso
                                                        2



                T[dkjoD 10H cbB x + sin 2x, (0 < x < 2π) d/ T[uso iK fBwBso wkB gsk eo'.
                jZb L wzB fbU                            y = x + sin 2x
                                                 dy
                                                     1 2cos2x
                ∴                                        =+
                                                 dx
                 dy  =  0 gqfs;Ekfgs eoB s/, 1 + 2cos 2x = 0
                 dx

                iK

                                                                                       π  2π
                fJ; soQK                                                          [∵ 0 < x < 2π]   ⇒    x =  ,
                                                                                       33
                j[D

                           π
                (1) id'A  x =
                           3
                  2
                 dy  =− 4sin  2  =− 4    3π    =− 2 3  foDkswe
                 dx 2       3        2    
                                         π
                ∴                         x =  T[Zs/ cbB T[uso j?.
                                         3
                                      π
                ns/ fdZs/ j'J/ cbB ftZu x =   gqfs;Ekfgs eoB s/, cbB dk T[uso wkB
                                      3
                                         π     2π  π    3  2π+ 33
                                            =  + sin  =  +  =                               T[Zso
                                         3     3   3   2      6
                           2π     dy        4π
                                   2
                (2) id'A  x =   sK   =− 4sin
                            3     dx 2       3



                                           LOVELY PROFESSIONAL UNIVERSITY                                               155
   156   157   158   159   160   161   162   163   164   165   166