Page 166 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 166

VED1
          E L-LOVELY-H math10-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12





           noEPk;soh dk rfDs

                     B'N                       ∂ 2  u      ∂ 2  u  ∂ 2  u
                                                     = 6x + 2,⋅  =  2,  =− 1                                HHH(3)
                                                x ∂  2      x ∂  2  ∂∂
                                                                   xy
                               (0, 0) wkBK d/ bJhl
                                               ∂ 2  u             ∂ 2  u
                                                        +
                                                     = 6(0) 2 = >  0,  =  2 >
                                                                          0
                                                             2
                                                x ∂  2             y ∂  2
                                            ∂ 2  u ∂ 2  u     ∂ 2  u  2
                                                      ⋅
                                                                      ( 1) =
                                                   = 2 2 = >       =−   2  1
                                                          4
                                             x ∂  2  y ∂  2   ∂∂  
                                                               x y
                               fJ; soQK, (0, 0) w[Zb, fBwBso PosK B{z ;zs[PN eodk j?.
                                       2
                                              2
                                   3
                               u = x  + x  – xy + y  + 4 = 4 (0, 0) w[Zb fpzd{ T[Zs/ fBwBso w[Zb j't/rk.
                               fpzd{ (–1/2, –1/4) d/ bJh,
                                                ∂ 2  u    1      ∂ 2  u
                                                      = 6 −   + 2 =− 1,  =  2
                                                      
                                                 x ∂  2    2      y ∂  2
                                   ∂ 2  u ∂ 2  u  ∂ 2  u  2
                                                     ( 1)2 ( 1) =− <
                                          −       = −   − −     3 0
                                    x ∂  2  y ∂  2   ∂∂  
                                              x y
                               fpzd{ (–1/2, –1/4), gbkfJD fpzd{ fdzdk j?.
                               BshfinK B{z ;zy/g o{g ftZu j/m nB[;ko fbfynk ik ;edk j?.








                               2H fBZu/ fdZs/ j'J/ cbB dh ;jkfJsk Bkb u dk uow w[Zb gsk eo'l
                                                     3
                                                         3
                                                                    y = x  + y  – 3x – 27y + 24
                               jZb L gfjbh Pq/Dh dhnK PosK
                                                                2
                                                      2
                                                                   f x  = 3x  – 3 = 0,    x  – 1 = 0
                                                      2
                                                                2
                                                                   f y  = 3y  – 27 = 0,  y  – 9 = 0
                               ∴ (1, 3), (1, ^3), (^1, 3), (^1, ^3)
                               d{ih Pq/Dh dhnK PosK
                                                                  f xx  = 9x
                                                                  f yy  = 9y
                                                                  f xy  = 0
                               (1, 3) d/ ;zdoG ftZu
                                                                 f xx  = 9x = 9 > 0
                                                                 f yy  = 9y = 27 > 0
                                                2
                                                f xx f yy  – (f xy )  = 243 – 0 = 243 > 0


           160                                             LOVELY PROFESSIONAL UNIVERSITY
   161   162   163   164   165   166   167   168   169   170   171