Page 167 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 167

VED1
          E L-LOVELY-H math10-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






                             fJekJh^10 L T[uso ns/ fBwBso L d' uo ns/ b/Aro/Ai r[De ;fjs gqshpzX T[uso ns/ fBwBso

                fJ; soQK, fpzd{ (1, 3) T[Zs/ u fBwBso j't/rk                                      B'N

                (1, ^3) d/ ;zdoG ftZu
                                                   f xx  = 9x = 9 > 0
                                                   f yy  = 9y = 27 < 0
                                   2
                                    f xx f yy  – (f xy )  = 9(–27) – 0 < 0
                fJ; soQK fpzd{ (1, ^3) T[Zs/ gbkfJD fpzd{ (Bk tZX s'A tZX bk fBT{Bsw) j't/rk.
                (^1, 3) fpzd{ d/ ;zdoG ftZu

                                                   f xx  = 9x = – 9 < 0
                                                   f yy  = 9y =  27 > 0
                                   2
                                    f xx f yy  – (f xy )  = (–9) (27) – 0 < 0
                fpzd{ (^1, 3) T[Zs/ th gbkfJD jZb gqkgs j't/rk.
                (^1, ^3) d/ ;zdoG ftZu
                                                    f xx  = 9x = –9 < 0,  f yy  = 9y = –27 < 0
                                   2
                                     f xx f yy  –(f xy )  = (–9) (–27) – 0 > 0
                fpzd{ (^1, ^3) T[Zs/ u dk w[Zb tZX s'A tZX j't/rk
                fBopZX d/ Bkb T[uso ns/ fBwBso b/Aro/Ai r[DKe ftXh wzfBnk, T[g:'rsk cbB ns/ nkwdB
                fBopZX fBwB fdZsk j?^ u = f (x, y) P x x + P y y = M
                fJZE/ u → T[g:'rsk x, y → t;s{nK, M → nkwdB px ns/ py → t;s{nK dh ehws
                fJZE/ T[gG'esk nkgDh T[g:'rsk tZX s'A tZX eoBk ukj[zdk j?  fdZs/ j'J/ nkwdB fBopZX T[Zs/  sK
                b/Aro/Ai r[DKe dk gq:'r eoB s/
                                                      v = f (x, y) + λ(M – P x  . X – P y  . y)

                10H2 b/Aro/Ai r[De ;fjs gqshpzX T[uso ns/ fBwBso
                     (Constrained Maxima and Minima with Langrange’s Multiplier)

                b/Aro/Ai ftXh dh ;jkfJsk Bkb th T[jh Bshi/ gqkgs j'Dr/ fijV/ T[go'es, ftXh d[nkok gqkgs j'J/
                jB. s[PNheoD cbB ns/ piN o/yk B{z b?D s/
                                                      V = f (q 1 q 2 ) + λ(y – p 1 q 1  – p 1 q 2 )
                fJZE/ V, λq 1  ns/ q 2  dk cbB j? ns/ λ b/Aro/Ai r[De (Multiplier) j?. fJZE/ ;kvk T[d/P V B{z tZX
                s'A tZX eoBk j?. fJ; soQK V B{z q 1 , q 2  ns/ λ ;zdoG ftZu nzfPe fBy/VB (Partial differentiation)
                eoe/ Iho' d/ pokpo oZyD s/

                                                                                                                                                              ...(4)

                                                                                                                                                             ....(5)



                                                                                                                                                            ....(6)

                ;wheoD (4) ns/ (5) B{z b?D s/
                                                       f 1 = λp 1  ns/ f = λp 2



                                           LOVELY PROFESSIONAL UNIVERSITY                                               161
   162   163   164   165   166   167   168   169   170   171   172