Page 165 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 165

VED1
          E L-LOVELY-H math10-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






                             fJekJh^10 L T[uso ns/ fBwBso L d' uo ns/ b/Aro/Ai r[De ;fjs gqshpzX T[uso ns/ fBwBso

                10H1 T[uso ns/ fBwBso gsk eoB d/ gqshpzX                                          B'N
                     (Conditions to Finding Maxima and Minima)

                (A) io{oh gqshpzX (Necessary Condition)L i/eo u = f (x, y)
                           sK ∂u/∂x = ∂u/∂y = 0
                (B) T[fus gqshpzX (Sufficient Condition)L

                T[uso d/ bJh, i/eo u = f (x, y) ns/ io{oh gqshpzX fx = 0, and fy = 0 sK
                                   2
                                                2
                                       2
                                                    2
                                      ∂ u/∂x  < 0 and ∂ u/∂y  > 0
                               ∂ 2  u  ∂ 2  u  ∂ 2   u   2
                                                                f
                                                           2
                ∴                  .     >         or AB > C  or   xx  f ⋅  yy  >  f
                                                                        xy
                                             xy 
                               ∂  x  2  ∂  y  2   ∂∂
                                ↓ () A  ()    () 
                                             C
                                      B

                fBwBso d/ bJh
                sK



                ∴

                or
                                         2
                                 2
                              3
                T[dkjo 1H u = x  + x  – xy + y  + 4 T[uso ns/ fBwBso w[Zb eZY'.
                                     u ∂
                                            2
                jZb L                 y =  0                                           ....(1)

                                       =  3x  +  2x –
                                     x ∂
                                      u ∂
                                           = –x + 2y = 0                                                                          ....(2)
                                      x ∂
                (1) s/ (2) B{z jZb eoB s/
                               2
                                          3x  + 2x – y = 0
                                                  –x + 2y = 0
                i/eo x = 2y sK gfjb/ ;wheoD d/ oZyD s/
                             2
                                3(2y)  + 2 (2y) – y = 0
                                             y(12y + 3) = 0
                                                   1
                id'A                        y = 0   or  y = –
                                                   4
                id'A y = 0
                                                            x = 2y  = 0
                         1
                id'A y = –
                         4
                                  1
                sK        x = 2y  = –
                                  2
                fJ; soQK, io{oh gqshpzX B{z gsk eoB d/ bJh ;kv/ e'b d' fpzd{ (0, 0) ns/ (^1$2, ^1$4) j?. j[D
                n;hA fJj gsk eoKr/ fe T[go'es wkB, T[uso ns/ fBwBso dhnK PowK B{z ;zs[PN eod/ jB iK
                BjhA.

                                           LOVELY PROFESSIONAL UNIVERSITY                                               159
   160   161   162   163   164   165   166   167   168   169   170