Page 316 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 316

VED1
          E L-LOVELY-H math22-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth  10-9-12





           noEPk;soh dk rfDs

                     B'N       T[go'es ;kofDe dk fsZi/ ekbw d/ nXko s/ ft;Eko eoB s/

                               = x(x – 1) (x – 6)  A  = 1 {(0 – 1 (1 – x)} – 0 {0 – 2} + (1 – x) {(5 – x) (1 – x) – 4}
                               Gkt, i/eo x ≠ 0, 1 ns/ 6 w?fNqe; A dh o?Ae 3 j't/rh

                                                    5    −            x  2  
                               ns/ i/eo x = 0, 1, 6 sK      =− 2 ≠  0,  o?Ae 2 j't/rh.
                                                       1        0 
                               o/yh fBoGosk ns/ w?fNqe; dh o?Ae (Linear Dependance and Rank of Matrix)L fJZe w?fNqe;
                               dhnK gzeshnK (ekbw) ftZu sK jh o/yh fBoGosk d/yh iKdh j? id'A T[jBK gzeshnK (ekbw) dk
                               o/yh ;z:'iB Iho' t/eNo (vector) d/ pokpo j[zdh j?. Gktl


                               i/eo




                               fJZE/ K 1 , K 2  ns/ K 3  ftZu xZN s'A xZN fJZe dk w[Zb Iho' j'Dk ukjhdk j?.

                               T[dkjoD 1L fBZu/ fdZs/ j'J/ w?fNqe; dh o/yh ;[szsosk dh iKu eo' ns/ o?Ae eZY'l
                                                      1    2     4
                                                             
                                                       A =    2    4    8
                                                             
                                                       3    6   12 
                               jZb L r[Dk eoB s/ Row 1 (R 1 ) ns/ 2(R 2 ) ftZu ^1 ns/ i'VB s/ 3(R 3 )] sK

                                                       –1R 1  – 1 R 2  + R 3  = 0                                                                                     (1)
                                                       –2 R 1  + R 2  = 0                                                                                               (2)
                                                       –3 R 1  + R 3  = 0                                                                                               (3)
                               ;wheoD (1) ftZu R 1 , R 2 , ns/ R 3  ftZu o/yh ;[szsosk BjhA j?, ;wheoD (2) R 1 , ns/ R 2  ns/
                               ;wheoD (3) R 1  ns/ R 3  ftZu o/yh fBoGosk do;k fojk j?. o?Ae d/ bJh,

                                            1    2     4   1    2     4
                                           
                                                  
                                                             
                                              2    4    8 ∼   0    0    0  Gkt o?Ae (A) = 1 j't/rh.
                                           
                                                             
                                                  
                                             3    6   12     0    0    0  
                                                      6      3     5 
                                                             
                                                   
                               T[dkjoD 2L i/eo  A =− 10    2     8  sK o/yh fBoGosk dk gqhyD eo' ns/ w?fNqe; (A) dh
                                                   
                                                             
                                                       5      2     3 
                               o?Ae eZY'.
                               jZb L    C 1 R 1  + C 2 R 2  + C 3 R 3  = 0
                                              6C 1  – 10C 2  + 5C 3  = 0                                                                                            (1)
                                              3C 1  + 2C 2  + 2C 3  = 0                                                                                              (2)
                                              5C 1  + 8C 2  + 3C 3  = 0                                                                                              (3)





           310                                             LOVELY PROFESSIONAL UNIVERSITY
   311   312   313   314   315   316   317   318   319   320   321