Page 316 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 316
VED1
E L-LOVELY-H math22-1 IInd 6-8-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
noEPk;soh dk rfDs
B'N T[go'es ;kofDe dk fsZi/ ekbw d/ nXko s/ ft;Eko eoB s/
= x(x – 1) (x – 6) A = 1 {(0 – 1 (1 – x)} – 0 {0 – 2} + (1 – x) {(5 – x) (1 – x) – 4}
Gkt, i/eo x ≠ 0, 1 ns/ 6 w?fNqe; A dh o?Ae 3 j't/rh
5 − x 2
ns/ i/eo x = 0, 1, 6 sK =− 2 ≠ 0, o?Ae 2 j't/rh.
1 0
o/yh fBoGosk ns/ w?fNqe; dh o?Ae (Linear Dependance and Rank of Matrix)L fJZe w?fNqe;
dhnK gzeshnK (ekbw) ftZu sK jh o/yh fBoGosk d/yh iKdh j? id'A T[jBK gzeshnK (ekbw) dk
o/yh ;z:'iB Iho' t/eNo (vector) d/ pokpo j[zdh j?. Gktl
i/eo
fJZE/ K 1 , K 2 ns/ K 3 ftZu xZN s'A xZN fJZe dk w[Zb Iho' j'Dk ukjhdk j?.
T[dkjoD 1L fBZu/ fdZs/ j'J/ w?fNqe; dh o/yh ;[szsosk dh iKu eo' ns/ o?Ae eZY'l
1 2 4
A = 2 4 8
3 6 12
jZb L r[Dk eoB s/ Row 1 (R 1 ) ns/ 2(R 2 ) ftZu ^1 ns/ i'VB s/ 3(R 3 )] sK
–1R 1 – 1 R 2 + R 3 = 0 (1)
–2 R 1 + R 2 = 0 (2)
–3 R 1 + R 3 = 0 (3)
;wheoD (1) ftZu R 1 , R 2 , ns/ R 3 ftZu o/yh ;[szsosk BjhA j?, ;wheoD (2) R 1 , ns/ R 2 ns/
;wheoD (3) R 1 ns/ R 3 ftZu o/yh fBoGosk do;k fojk j?. o?Ae d/ bJh,
1 2 4 1 2 4
2 4 8 ∼ 0 0 0 Gkt o?Ae (A) = 1 j't/rh.
3 6 12 0 0 0
6 3 5
T[dkjoD 2L i/eo A =− 10 2 8 sK o/yh fBoGosk dk gqhyD eo' ns/ w?fNqe; (A) dh
5 2 3
o?Ae eZY'.
jZb L C 1 R 1 + C 2 R 2 + C 3 R 3 = 0
6C 1 – 10C 2 + 5C 3 = 0 (1)
3C 1 + 2C 2 + 2C 3 = 0 (2)
5C 1 + 8C 2 + 3C 3 = 0 (3)
310 LOVELY PROFESSIONAL UNIVERSITY