Page 50 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 50

VED1
          E L-LOVELY-H math2-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12





           noEPk;soh dk rfDs

                     B'N












                               T[dkjoD 15H cbB f(x) fJ; soQK gfoGkfPs j?L





                               fdykU fe  lim ( )fx  ti{d ftZu BjhA j?.
                                        x →∞
                               jZb L fJZE/ f (0 + h) = 1H
                               ∴          dZyD gZy ;hwk & f (0 + 0) =  lim fx
                                                                     ( ) = lim (1) = 1 H
                                                                x→+       x→+
                                                                            00
                                                                 00
                               ns/         f (0 – h) = – 1
                                                                    ( ) = lim  (–1) = –1H
                               ∴          tkw gZy ;hwk & f (0 –0 ) =  lim fx
                                                               x→−       x→−
                                                                 00
                                                                           00
                               ∵          lim fx ≠  lim  f(x)
                                              ( )
                                         x→+       x→−
                                          0 0
                                                    00
                               fJ; soQK  lim ( )fx  ti{d ftZu BjhA j?.
                                       x→ 0
                                                       x  − 2
                               T[dkjoD 16H fdykU fe  lim     dk ti{d BjhA j?.
                                                    x →2  x  − 2
                               jZb L id'A x > 2,             x −  2 = (x – 2)

                               ∴


                               ∴


                                          x −  2
                               fJ; soQK  lim    dk ti{d BjhA j?.
                                       x→ 2  x −  2
                               T[dkjoD 17H cbB  ()fx  fi;d/ bJh







           44                                             LOVELY PROFESSIONAL UNIVERSITY
   45   46   47   48   49   50   51   52   53   54   55