Page 55 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 55

VED1
          E L-LOVELY-H math2-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






                                                                                  fJekJh^2 L ;hwk ns/ brkskosk

                i/eo d/ o/yktK x = a - δ, x = a + δ d/ ftZu cbB f (x) d/ b/ykfuZso dk jo fpzd{ d' o/yktK y = a -   B'N
                ε, y = a + ε d/ ftukb/ th j't/ sK cbB f (x) fpzd{ x = a T[Zs/ brksko j?.
                T[dkjoD L (i) nuo cbB (constant function) f (x) = c, x d/ jo/e n;b wkB d/ bJh brksko
                j?.
                (ii) cbB f (x) = sin x ns/ f (x) cos x, x d/ jo/e n;b wkB d/ bJh brksko j?.

                2H12 fe;h fpzd{ T[Zs/ cbB dh brkskosk gsk eoB dh ftXh (Method to
                       Finding Continuity of a Function at any Point)

                ;hwk (limit) dh gfoGkPk s'A ;gPN j? fe  lim  f (x) dk ti{d (existence) sK jh j[zdk j?, id'A
                                                  x→ a
                          f (x) dh tkw gZy ;hwk & f (x) dh dZyD gZy ;hwk
                Gkt                lim  f (x) =  lim  f (x)
                                x→ a -    x→ a +
                Gkt                f (a – 0) = f (a + 0)
                fJ; soQK fpzd{ x = a T[Zs/ cbB f (x) dh brkskosk (continuity) gqdofPs eoB d/ bJh ;kB{z
                fdykT[Dk ukjhdk j? fe fJ; fpzd{ T[Zs/ f (x) dh tkw gZy ;hwk = f (x) dh dZyD gZy ;hwk &
                cbB dk wkB
                Left Hand Limit = Right Hand Limit = Value of the Function
                Gkt             lim f (x) =  lim  f (x) = f (a)
                             x→ a −    x→ a +
                iK              f (a – 0) = f (a + 0) = f (a)
                dZyD gZy ;hwk (R.H.L.) d/ bJh f (x) ftZu x = a + h oZy', fiZE/  h → , id'A  x →
                                                                                   a
                                                                        0
                tkw gZy ;hwk (L.H.L.) d/ bJh f (x) ftZu x = a - h oZy', fiZE/  h → , id'A  x →
                                                                                a
                                                                      0

                2H13 fJZe nzsokb ftZu cbB dh brkskosk
                     (Continuity of a Function in an Interval)
                fJZe cbB  f  (x)  fe;h fttfos nzsokb  (a, b)  ftZu brksko fejk iKdk  j? i/eo fJj  nzsokb
                (a, b) ftZu x d/ ;ko/ wkBK d/ bJh brksko j?.
                cbB f (x) fe;h pzd nzsokb (closed interval) [a, b] ftZu brksko fejk iKdk j?, i/eo
                       (i)  fJj x d/ T[jBK ;ko/ wkBK d/ bJh brksko j't/ fi;d/ bJh a < x < b

                      (ii)   lim  f (x) = f (a)
                           x→ a+ 0
                     (iii)   lim  f (x) = f (b)H
                           x→ b- 0
                Gkt cbB y[Zb/ nzsokb (a, b) ftZu brksko j't/ ns/ x = a T[Zs/ dZyD gZy s'A ns/ x = b T[Zs/ tkw
                gZy s'A brksko j't/.

                fJZe nzsok ftZu nbrkskosk (Discontinuity in an interval)L cbB f (x) fe;h nzsokb ftZu
                nbrksko fejk iKdk j? i/eo fJj nzsokb ftZu fe;h fJZe fpzd{ T[Zs/ iK pj[s ;ko/ fpzd{nK T[Zs/
                nbrksko j't/.

                2H14 brksko cbBK dk gqw/: (Theorem on Continuous Functions)

                     (i)  i/eo f (x) ns/ g (x) d'B'A fe;h fpzd{ x = a T[Zs/ brksko j'D sK f (x) ± g (x) th x = a
                        T[Zs/ brksko j't/rk.


                                            LOVELY PROFESSIONAL UNIVERSITY                                               49
   50   51   52   53   54   55   56   57   58   59   60