Page 152 - DMTH401_REAL ANALYSIS
P. 152

Real Analysis




                    Notes                            1
                                   4.  (i)  Let f(x) =   , x  0. Show that  lim f(x) = +,  lim f(x) =  and  lim f(x) = + .
                                                     x               x +        x 0–         x 0
                                                                                                -
                                                                       0
                                                      1
                                       (ii)  Let f(x) = –  , x  0. Show that  lim f(x) = –,  lim f(x) = – and  lim f(x) = –.
                                                      x               x +        x 0–          x 0
                                                                        0
                                                                                                 -
                                                    1
                                       (iii)  Let f(x) =   , x  0. Prove that  lim f(x) = +,  lim f(x) = –.
                                                    x                x +        x 0–
                                                                      0
                                                     1
                                       (iv)  Let f(x) = –  , x  0. Prove that  lim f(x) = –,  lim f(x) = .
                                                     x               x +        x  0–
                                                                       0
                                   5.  Show that for the function f: R  R defined by
                                                                2
                                                           f(x) = x ,
                                       f(x) exists for every a  R.
                                   6.  Find

                                                      3
                                                   +
                                                         -
                                                (2x 3) (3x 2) 2
                                       (i)   lim     5
                                             x w    x +  5
                                             -
                                                 3
                                                (x +  1) 1 3
                                       (ii)  lim       .
                                                   +
                                             x w  x 1
                                             -
                                              ì 2x    for 0 s x <  1
                                              ï
                                   7.  If g(x) =  4   for x = 1
                                              í
                                              ï
                                                 -
                                                           x
                                              î 5 3x for 1 <   2.
                                       find   lim g(x)
                                            x  1
                                   8.  Find
                                                                                      -
                                                 x -  2                             æ  x 1ö  x
                                       (i)   lim                           (v)   lim ç  ÷
                                                                                     x 1 ø
                                             x 4 x 4-                           x  è +
                                                      2
                                                          -
                                                    3x - x 10                       æ sin 2xö  1 +  x
                                       (ii)  Find  lim  2                  (vi)  lim ç    ÷
                                                          -
                                                                                   0
                                                 x 2 x +  5x 14                 x è  x  ø
                                                                                          x 2
                                                                                      +
                                                 -
                                                1 cosx                              æ  x 1 ö
                                       (iii)  lim  2                       (vii) lim ç   ÷
                                                                                       +
                                             x  0  x                            x è 2x 1 ø
                                                    -
                                                sin x sina
                                       (iv)  lim
                                                    -
                                             x  a  x a
                                   Answers: Self  Assessment
                                   1.  1675                              2.   domain
                                   3.   –  approach                    4.   |f(x) – A| <  for a – 6 < x < a




          146                               LOVELY PROFESSIONAL UNIVERSITY
   147   148   149   150   151   152   153   154   155   156   157