Page 374 - DMTH401_REAL ANALYSIS
P. 374

Real Analysis




                    Notes          8.  If A ’s are -algebras on a set X, then     := {A  X : A    for every } is also a -algebra
                                                                                   
                                       on X.
                                   9.  Show that () is generated by each of the following collections: {(a, ¥) : a  }, {[a, ¥) : a
                                        }, {(–¥, b) : b  }, {(–¥, b] : b  }, {(a, b) : a < b and a, b  }.
                                                                     
                                   10.  (i) If card(X)  card(), then card(X )  card(). (ii) If card(J)   card() and card(X )  
                                                                                                            
                                       card() for each   J, then, card(  X )  card(). [Hint: (i) Assume X = (0,1). Define a one-
                                                                   
                                                                    J
                                                                      
                                                     
                                                                                   
                                       one map f : (0, 1)   (0,1) as follows. If x = (x )  (0, 1)  and if x  = 0.x x , then f(x) =
                                                                            n              n    n,1 n,2
                                                                                                      2
                                       0.x , x , x , x , x , x . (ii) Let g:   J and h  :   X  be surjections. Then f:      X
                                          1 1 1 2 2 1 1 3 2 2 3,1                                         J  
                                                                                 2
                                       defined as f(x, y) = h  (x) is a surjection, and card( ) = card().]
                                                        g(y)
                                   Answers: Self  Assessment
                                   1.  Riemann integration theory        2.   Lebesgue’s theory
                                   3.  d-dimensional Jordan outer content  4.  Vitali set
                                   5.  continuous                        6.   monotone function
                                   7.  Borel -algebra                   8.   non-empty  countable
                                   30.8 Further Readings




                                   Books       Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
                                               (3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7(7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).
                                               G.F. Simmons: Introduction  to Topology  and Modern  Analysis, Ch.  2(9-13),
                                               Appendix 1, p. 337-338.

                                               Shanti Narayan: A Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,Ch.14,
                                               Ch.15(15.2, 15.3, 15.4)
                                               T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.

                                               S.C. Malik: Mathematical Analysis.
                                               H.L. Royden: Real Analysis, Ch. 3, 4.





























          368                               LOVELY PROFESSIONAL UNIVERSITY
   369   370   371   372   373   374   375   376   377   378   379