Page 43 - DMTH401_REAL ANALYSIS
P. 43

Unit 2: Algebraic Structure and Countability




          Theorem 4: The set of all rational numbers between [0,1] is countable.                Notes
          Proof: Make a systematic scheme in an order for listing the rational numbers x where *   x  1,
          (without duplicates) of the following sets
                                   A  = {0, 1}
                                    1
                                    2 { 1   1  1   1  ,  }
                                   A  =  2  ,  3  ,  4  ,  5
                                   A  = { 2  ,  2  ,  2  ,  }
                                    3   3   5  7
                                    4 { 3  ,  3  ,  3  ,  3  ,  }
                                   A  =  4  5  7   8

          .........................................................................................................................................................................................
          .........................................................................................................................................................................................

          You can see that each of the above sets is countable. Their union is given by
                                     i {  1 1 2 1 3 1 2 3 4 1      }
                                                   ,
                                                         ,
                                                ,
                                            ,
                                                              ,
                                                            ,
                                                       ,
                                                     ,
                                              ,
                                   A  =  0,  2 3 3 4 4 5 5 5 5 6  ,  = [0, 1]  Q,
          which is countable by Theorem 3.
          Theorem 5: The set of all positive rational numbers is countable.
          Proof: Let Q, denote the set of all positive rational numbers.  To prove that Q, is countable,
          consider the following sets:
                                   A  = {1, 2, 3, ........}
                                    1
                                    2 { 1   2  5  ,   }
                                   A  =  2  ,  2  ,  2  ..
                                    3 { 1   2  4  ,   }
                                   A  =  3 ,  3  ,  3  ..
                                    4 { 1   3  5  ,   }
                                   A  =  4  ,  4  ,  4  ..

          .........................................................................................................................................................................................
          .........................................................................................................................................................................................
          Enlist the elements of these sets in a manner as you have done in Theorem 3 or as known below:
























                                           LOVELY PROFESSIONAL UNIVERSITY                                   37
   38   39   40   41   42   43   44   45   46   47   48