Page 23 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 23

Complex Analysis and Differential Geometry




                    Notes          We shall see that f is differentiable at z .
                                                                  0
                                                               
                                                                  0
                                                         0
                                                     =  f(z   z) f(z )
                                                             z
                                                                               
                                                                                                
                                                                      
                                                     =  [u(x   x,y   y) u(x ,y )] i[v(x   x,y   y) v(x ,y )]
                                                                             0
                                                                                          0
                                                                                                      0
                                                          0
                                                                                    0
                                                                0
                                                                                                    0
                                                                          0
                                                                               
                                                                             x i y
                                                                                 
                                   Observe that
                                   u(x  + x, y  + y) – u(x , y ) = [u(x  + x, y  + y) – u(x , y  + y)] + [u(x , y  + y) – u(x ,y ].
                                     0      0        0  0     0      0        0  0          0  0        0  0
                                   Thus,
                                                                   u
                                                                     
                                   u(x  + x, y  + y) – u(x , y  + y) =  x   x  ( ,y   y),
                                                                       0
                                                        0
                                     0
                                            0
                                                     0
                                   and,
                                                             u ( ,y   y)  =    u  (x ,y )    ,
                                                               
                                                             x   0        x  0  0  1
                                   where
                                                                     lim   0.
                                                                      z 0  1
                                   Thus,
                                                   u(x  + x, y  + y) – u(x , y  + y) = x       u x   (x ,y )   1    .
                                                                                      0
                                                                                         0
                                                     0
                                                                        0
                                                                     0
                                                            0
                                   Proceeding similarly, we get
                                                        
                                                            0
                                                   0
                                              =  f(z   z) f(z )
                                                       z
                                                [u(x   x,y   y) u(x ,y )] i[v(x   x,y   y) v(x ,y )]
                                                                        
                                                                                         
                                                                
                                              =     0     0         0  0      0     0        0  0
                                                                        
                                                                       x i y
                                                                          
                                                 x    du (x ,y )    i dv  (x ,y ) i 2      y    du (x ,y )    i dv  (x ,y ) i 4 
                                                                                                         
                                                                          
                                                                 dx
                                                                                                     0
                                                          0
                                                                                             3
                                                                                   dy
                                                                                       0
                                                                                                       0
                                                                                         0
                                                    dx
                                                        0
                                                                        0
                                                              1
                                                                     0
                                                                                                 dy
                                              =                                                           ,.
                                                                                
                                                                             x i y
                                                                              
                                   where    0 as z  0. Now, unleash the Cauchy-Riemann equations on this quotient and
                                         i
                                   obtain,
                                                        
                                                   0
                                              =  f(z   z) f(z )
                                                            0
                                                       z
                                                             
                                                 x      u   i   v     i y      u   i   v    stuff
                                              =      x    x     x   x    
                                                          x i y           x i y
                                                            
                                                                              
                                                                             
                                                             
          16                                LOVELY PROFESSIONAL UNIVERSITY
   18   19   20   21   22   23   24   25   26   27   28