Page 23 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 23
Complex Analysis and Differential Geometry
Notes We shall see that f is differentiable at z .
0
0
0
= f(z z) f(z )
z
= [u(x x,y y) u(x ,y )] i[v(x x,y y) v(x ,y )]
0
0
0
0
0
0
0
0
x i y
Observe that
u(x + x, y + y) u(x , y ) = [u(x + x, y + y) u(x , y + y)] + [u(x , y + y) u(x ,y ].
0 0 0 0 0 0 0 0 0 0 0 0
Thus,
u
u(x + x, y + y) u(x , y + y) = x x ( ,y y),
0
0
0
0
0
and,
u ( ,y y) = u (x ,y ) ,
x 0 x 0 0 1
where
lim 0.
z 0 1
Thus,
u(x + x, y + y) u(x , y + y) = x u x (x ,y ) 1 .
0
0
0
0
0
0
Proceeding similarly, we get
0
0
= f(z z) f(z )
z
[u(x x,y y) u(x ,y )] i[v(x x,y y) v(x ,y )]
= 0 0 0 0 0 0 0 0
x i y
x du (x ,y ) i dv (x ,y ) i 2 y du (x ,y ) i dv (x ,y ) i 4
dx
0
0
3
dy
0
0
0
dx
0
0
1
0
dy
= ,.
x i y
where 0 as z 0. Now, unleash the Cauchy-Riemann equations on this quotient and
i
obtain,
0
= f(z z) f(z )
0
z
x u i v i y u i v stuff
= x x x x
x i y x i y
16 LOVELY PROFESSIONAL UNIVERSITY