Page 236 - DMTH402_COMPLEX_ANALYSIS_AND_DIFFERENTIAL_GEOMETRY
P. 236

Unit 19: Serret-Frenet Formulae




          10.  Vertical projection from E  onto its xy-plane is given by the map                Notes
                                    8
                                     : E   E  : (x, y, z)  (x, y, 0).
                                       8
                                            8
               A unit speed curve b : [0, L]  E  lies above the xy-plane and has vertical projection
                                         8
                                             s          s
                                       8
                             :[0,L]   E : s  ( cos(logs/2), sin(logs/2),0).
                            
                                             2          2
               Find explicitly a suitable    and for  it compute  the Frenet-Serret  frame, curvature  and
               torsion.

          Answers: Self  Assessment

          1.   moving frame along f                 2.   Frenet n-frame or Frenet frame
          3.   linear isometry                      4.   non-degeneracy conditions
          5.   X’(t) = –X(t)k(t)

          19.6 Further Readings





           Books      Ahelfors, D.V. : Complex Analysis
                      Conway, J.B. : Function of one complex variable
                      Pati, T. : Functions of complex variable
                      Shanti Narain : Theory of function of a complex Variable
                      Tichmarsh, E.C. : The theory of functions

                      H.S. Kasana : Complex Variables theory and applications
                      P.K. Banerji : Complex Analysis
                      Serge Lang : Complex Analysis

                      H. Lass : Vector & Tensor Analysis
                      Shanti Narayan : Tensor Analysis
                      C.E. Weatherburn : Differential Geometry
                      T.J. Wilemore : Introduction to Differential Geometry
                      Bansi Lal : Differential Geometry.






















                                           LOVELY PROFESSIONAL UNIVERSITY                                  229
   231   232   233   234   235   236   237   238   239   240   241