Page 172 - DMTH403_ABSTRACT_ALGEBRA
P. 172

Unit 16: Ideals





          Solution: I =  4 R, and hence is an ideal of R. From group theory you know that the number 8 of  Notes
                                o(R)  8
          elements in R/I = o(R/I) =       4.
                                 o(I)  2
          You can see that these elements are

          0 + 1 = {0, 4}, 1 + 1 = {1, 5} , 2 + 1 = {2, 6}, 3 + I = (3, 7}.
          The Cayley tables for + and . in R/I are














          Self Assessment

          1.   A non-empty subset I of a ring (R+,.) an ................. of R of a – b  I for all a, b  I.
               (a)  ring                    (b)  subring

               (c)  polynomial              (d)  ideal
          2.   If n  0, 1. Then the subring nZ = {nm | m  Z} is a proper ................. ideal of Z.
               (a)  non-trivial             (b)  trivial
               (c)  direct                  (d)  indirect

          3.   X be a set and Y be a non-empty subset of X. Then I = {A  (x) | A ................. y = } is an ideal
               of (x).
               (a)                         (b)  

               (c)                         (d)  
          4.   If I and J are ideals of a ring R, then I ................. J are ideals ring R.
               (a)                         (b)  
               (c)                         (d)  

          5.   A  normal subgroup N of a group G, the set of all cosets of N is a group and is called
               ................. associated with the normal subgroup N.
               (a)  quotient group          (b)  ring

               (c)  subring                 (d)  ideal
          16.2 Summary


               We call a non-empty subset I of a ring (R, +, .) an ideal of R if
          
               (i)  a – b  I for all a, b  I, and
               (ii)  ra  I for all r  R and a  I.




                                           LOVELY PROFESSIONAL UNIVERSITY                                  165
   167   168   169   170   171   172   173   174   175   176   177